Global Market for Distributed Generation Technologies

Description: Increased demands on global electrical power systems and incidences of electricity shortages, power quality problems, rolling blackouts, and electricity price spikes have caused many utility customers to seek other sources of high-quality, reliable electricity. Distributed Energy Resources (DER), small-scale power generation sources located close to where electricity is used (e.g., a home or business), provide an alternative to or an enhancement of the traditional electric power grid.

Distributed power resources, including on-site generation, local energy storage, combined heat and power systems, and load control devices, promise to revolutionize the way electric power is delivered to industrial, commercial, and residential customers worldwide. The traditional model of electric power delivery used economies of scale to produce low-cost electricity from central power plants, delivered to the customers over a large network of transmission and distribution lines.

The emerging model of power delivery will vary according to the particular market, but will likely evolve along one of two paths. In areas with established central-station grids, distributed resources will be incorporated into the distribution system to support reliability, power quality, and grid expansion. In developing and rural areas, distributed resources will form the core of the grid, allowing for flexible, incremental grid expansion with reduced environmental impacts and reasonable operating costs.

Before these models become reality, however, key participants in the potential markets, including government planners/regulators, utility decision-makers, and end-users, must be made aware of the benefits of these technologies and their impacts on electric power systems, economic development, and environmental quality.

This research brings a focus on Distributed Generation Technologies, looking at the various technologies involved in the process, economics of distributed generation, leading countries who are actively promoting distributed generation, issues and challenges, growth drivers, etc.

Contents:

A. Executive Summary
B. Introduction
C. What is Distributed Generation?
D. Distributed Generation Technologies
 D.1 Reciprocating Engines
 D.2 Gas Turbines
 D.3 Microturbines
 D.4 Fuel Cells
 D.5 Photovoltaic Systems
 D.6 Wind
 D.7 Market Impact
 D.7.1 Generating Equipment
 D.7.2 Distribution Network
E. Economics of Distributed Generation
 E.1 Distributed Generation versus Central Power
 E.2 Economics of Photovoltaic Electricity
 E.3 Flexibility Increases the Value of Distributed Generation
 E.4 Grid Benefits of Distributed Generation
 E.4.1 Combined Heat and Power (CHP)
 E.4.2 Reliability, and Standby or Emergency Power
 E.4.3 Reliability, Network Losses, Usage, and Investment
 E.4.4 Impact on Network Losses, Usage, and Investment
 E.4.5 Offgrid and Remote Consumers
E.4.6 Postponing Generation Investment
E.4.7 Electricity Market Benefits
E.4.8 Potential Environmental Benefits

F. Distributed Generation in Leading Countries
F.1 Japan
F.2 United States
F.3 The Netherlands
F.4 UK
F.5 Conclusion

G. Challenges in Policies
G.1 Economic Efficiency
G.1.1 Grid Interconnection
G.1.2 Electricity Market Reform & Distributed Generation
G.1.3 Market Structure
G.1.4 Market Operation
G.1.5 Pricing
G.1.6 Pricing & Location
G.1.7 Connection Charges
G.1.8 Operating Charges
G.1.9 Congestion Pricing
G.1.10 Net Metering
G.2 Environmental Protection
G.2.1 Air Quality
G.2.2 GHG Emissions
G.3 Energy Security
G.3.1 Energy Diversification
G.3.2 Reliability of Electricity System
G.4 Conclusion

H. Applications of Distributed Generation

I. Future of Distributed Generation in Electricity Networks
I.1 Generation Technology Research and Development
I.2 Implications for Electricity Network Design

J. Appendix
J.1 Distributed Generation Technology and Demand Management Schemes
J.1.1 Demand Management Contracts
J.1.2 Distributed Generation
J.1.3 Distributed Generation vs. Demand Management Contracts
J.1.4 Conclusion
J.2 New Requirements for Distribution System
J.3 Distributed Generation Energy Services & Demand Shifting During Peak Hours
J.3.1 Introduction
J.3.2 Business Scenario
J.3.3 Business Analysis
J.4 Small-Scale Hydropower Plants and Distributed Generation
J.4.1 Introduction
J.4.2 Business Scenario
J.4.3 Business Analysis
J.5 Distributed Balancing Services
J.5.1 Introduction
J.5.2 Business Scenario
J.5.3 Business Analysis
J.6 Active Management of Distribution Networks
J.6.1 Introduction
J.6.2 Business Scenario
J.6.3 Business Analysis
J.7 Energy Consumption and Emissions from On-site CHP & Conventional Heat and Power Generation
J.7.1 Comparing Fuel Consumption and Emissions
J.8 Figures & Tables
K. Glossary of Terms

List of Figures

Figure 1: Generating Plants Costs Curves Concerning Power (1930-1990)
Figure 2: Recuperated Microturbine System
Figure 3: The Construction of the Low Temperature Fuel Cell PEMFC
Figure 4: Model 38kV Radial Network with Distributed Generation
Figure 5: Comparison of PV Costs/Output to Household Electricity Rates in Selected OECD Countries
Figure 6: Security of Supply Example with DG
Figure 7: A Simple Distribution Network
Figure 8: Power Flows without DG
Figure 9: Power Flows & Usage with G Producing 400 kW
Figure 10: NOx Emissions from Distributed-Generation Technologies (kg/MWh)
Figure 11: CO2 Emissions from Distributed-Generation Technologies (in kg/MWh)
Figure 12: Comparison of Costs of Distributed Generation & Demand Management Contracts
Figure 13: Financial Comparison of Different DG Technologies
Figure 14: Networked Business Model for Local DG Production in Norway
Figure 15: Value Model for a DG-Supported Distributed Balancing Service
Figure 16: Supplier Revenues in the Balancing Services Business Model for DG
Figure 17: Value Exchanges between Market Parties in Active Management of Distribution Networks
Figure 18: Variation of DG Profitability with Wholesale Tariff
Figure 19: Variation of DG Profitability with Cost of Active Management
Figure 20: Variation of DG Profitability with Connection Charge
Figure 21: Distributed Generation Platform
Figure 22: Efficiency Comparison
Figure 23: OECD Capacity Additions by Fuel, 2001-2030
Figure 24: Savings in Transmission Investment from the Growth in Distributed Generation
Figure 25: Schematic of an Individual Fuel Cell
Figure 26: Comparison of Power Plant Efficiency
Figure 27: Diagram of a Generic Fuel Cell System

List of Tables

Table 1: Cost and Thermal Efficiencies of DG Technologies Inclusive of Grid Connection Costs and Without Combined Heat and Power Capability
Table 2: Emission Profiles of Distributed Generation Technologies
Table 3: Overview of Microturbines
Table 4: Indicative Costs of Various Distributed-Generation Technologies
Table 5: Distributed Generation Technology Costs Inclusive of CHP Infrastructure
Table 6: Cost of a One-hour Power Outage for Different US Businesses
Table 7: Economics of Gas CHP in Japan
Table 8: Cogeneration System Capacity (in MW) by Sector & Generator Type as of March 2014
Table 9: Comparison of Distributed-Generation Issues in Japan, the US, the Netherlands, and the UK
Table 10: Estimates of “Embedded Benefit” to Distributed Generators in the UK (in USD per MWh)
Table 11: New South Wales (Australia) Distribution Loss Factors
Table 12: Japanese NOx Limits on Cogeneration Systems
Table 13: Examples of NOx Limits in the US Applicable to Distributed Generation (in kg/MWh)
Table 14: DG Application Types & Characteristics
Table 15: Analyzing Data for Shifts in Peak Demands
Table 16: Changes in Network Tariff
Table 17: Expected Profitability, Accounting for Possible Changes in Network Tariffs
Table 18: Estimated Revenues for the Energy Supplier
Table 19: Base Data for Analysis of the Active Management Scenario
Table 20: Cash Flows for Various Actors

Ordering: Order Online - http://www.researchandmarkets.com/reports/462121/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Global Market for Distributed Generation Technologies
Web Address: http://www.researchandmarkets.com/reports/462121/
Office Code: SC6IE9YX

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 1200</td>
</tr>
<tr>
<td>Hard Copy</td>
<td></td>
<td>USD 1300 + USD 57 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - Site License</td>
<td></td>
<td>USD 1500</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 1750</td>
</tr>
<tr>
<td>CD-ROM</td>
<td></td>
<td>USD 1300 + USD 57 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * _______________________
Job Title: ___
Organisation: __
Address: __
City: ___
Postal / Zip Code: __
Country: __
Phone Number: __
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World