+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Brillouin Scattering Part 2. Semiconductors and Semimetals Volume 110

  • Book

  • August 2022
  • Elsevier Science and Technology
  • ID: 5548625

Brillouin Scattering, Part Two, Volume 110 in the Semiconductors and Semimetal series, marks the centenary of Leon Brillouin's seminal 1922 paper which provided a detailed theory on the effect that now bears his name.� Sections in this new release include Optical Fiber Sensors Based on Stimulated Brillouin scattering, Brillouin-based RF frequency sources, SBS for Microwave Photonics (MWP), Engineerable Brillouin processes for integrated photonics, SBS in optical communication systems - the good, the bad and the ugly, Slow light, dynamic gratings and light storage, Non-reciprocity in Brillouin scattering,� Electromechanical Brillouin Scattering, and Brillouin light scattering for studying mechanics of biological systems.

Stimulated Brillouin Scattering (SBS) is the strongest third order nonlinearity and plays an important role in contemporary science and applications, particularly lasers, communications, fiber optics and basic physics. This volume provides different perspectives on current technological contexts of SBS in a range of different application areas, including sensing, communications, radar, imaging and information storage.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

Preface Benjamin J. Eggleton, Michael Steel and Chris Poulton 1. SBS-based fiber sensors A. Zadok, X. Bao, Z. Yang and L. Thevenaz 2. Brillouin-based radio frequency sources Moritz Merklein, Thomas Schneider and Kerry John Vahala 3. Stimulated Brillouin scattering for microwave photonics David Marpaung and Yang Liu 4. Integrated Brillouin lasers and their applications Daniel J. Blumenthal, Irina Kabakova, Peter T. Rakich and Kerry Vahala 5. SBS in optical communication systems: The good, the bad and the ugly Bill Corcoran and A. Choudhary 6. Slow light, dynamic gratings and light storage Birgit Stiller, Herbert Winful, Robert Boyd and Moritz Merklein 7. Nonreciprocity in Brillouin scattering Nils T. Otterstrom, Eric A. Kittlaus, Donggyu B. Sohn and Gaurav Bahl 8. Electromechanical Brillouin scattering Huan Li, Omar Florez, Bingcheng Pan, Guilhem Madiot, Clivia M. Sotomayor Torres and Mo Li 9. Brillouin light scattering in biological systems Irina Kabakova, Giuliano Scarcelli and Seok-Hyun Yun

Authors

Chennupati Jagadish Distinguished Professor in Electronic Materials Engineering in the Research School of Physics and Engineering, Australian National University, Australia. Chennupati Jagadish is a Distinguished Professor in Electronic Materials Engineering in the Research School of Physics and Engineering at the Australian National University. He has more than 35 years of research experience in semiconductor physics, materials science and optoelectronic devices. He has published more than 550 journal papers and edited many books and has given more than 120 plenary, keynote and invited talks at prime conferences in the field. He is world renowned in the fields of semiconductor optoelectronics and nanotechnology. He has received 2015 IEEE Nanotechnology Pioneer Award, 2015 IEEE Photonics Society Engineering Achievement Award, 2013 Walter Boas Medal and 2010 Quantum Device Award and Fellow Australian Academy of Science, Australian Academy of Technological Sciences and Engineering, The World Academy of Sciences and 14 other professional societies.In 2016 Jagadish was awarded the highest civilian honour given by Australian Government, Companion of Order of Australia (AC) as part of Australia Day Honours announced by the Governor General's office. Zetian Mi Professor, McGill University, Montreal, Canada. Zetian Mi is a Professor in the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. He received the PhD degree in Applied Physics at the University of Michigan in 2006. His teaching and research interests are in the areas of III-nitride semiconductors, LEDs, lasers, quantum photonics, solar fuels, and artificial photosynthesis. Prof. Mi has edited 2 books, 12 book chapters, 20 patents/patent applications, more than 200 journal papers, and over 300 conference papers/presentations on these topics. He was a faculty member at McGill University from 2007 to 2016, where he received several awards, including the Hydro-Québec Nano-Engineering Scholar Award in 2009, the William Dawson Scholar Award in 2011, the Christophe Pierre Award for Research Excellence in 2012, and the Engineering Innovation Award in 2105. Prof. Mi has received the Young Investigator Award from the 27th North American Molecular Beam Epitaxy (MBE) Conference in 2010 and the Young Scientist Award from the International Symposium on Compound Semiconductors in 2015. Prof. Mi serves as the Editor of Progress in Quantum Electronics. He also served as the Associate Editor of IEEE J. Lightwave Technol. as well as the Chair of many international conferences, including the General Chair of IEEE Photonics Conference in 2020, General Chair of IEEE Photonics Society Summer Topicals Meeting in 2016-2017, and Co-Chair of International Symposium on Semiconductor Light Emitting Devices in 2017. Prof. Mi is a fellow of SPIE and OSA.