+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Market for Bio-based and Sustainable Materials 2024-2035

  • PDF Icon

    Report

  • 2585 Pages
  • April 2024
  • Region: Global
  • Future Markets, Inc
  • ID: 5766255

Biobased materials, sustainable materials, biochemicals, biopolymers, natural fiber composites, sustainable construction, biobased packaging, sustainable textiles, biobased coatings, biofuels, sustainable electronics

Advancements in science and technology are enabling companies to develop and design chemicals and materials for a more sustainable future. The global plastics industry is increasingly turning to biobased alternatives to supplement production and address sustainability concerns, as less than 10% of the world's plastic is currently recycled. Biobased materials are products primarily derived from living matter (biomass), either occurring naturally or synthesized. These materials can include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. Various processes are used to convert biomass components into value-added products and fuels, which can be broadly classified as biochemical or thermochemical. Additionally, biotechnological processes involving plant breeding, fermentation, and conventional enzyme isolation are employed. As new bio-based materials emerge, they have the potential to compete with conventional materials, and this publication explores the opportunities for their use in existing and novel products.

There is a growing demand from consumers and regulatory bodies for bio-based chemicals, materials, polymers, plastics, paints, coatings, and fuels that exhibit high performance, good recyclability, and biodegradable properties. This demand is driving the transition towards more sustainable manufacturing practices and products, as industries seek to reduce their environmental impact and meet evolving consumer preferences.

The Global Market for Bio-based and Sustainable Materials 2024-2035 offers a comprehensive overview of the rapidly growing field of biobased and sustainable materials. It provides in-depth insights into a wide array of innovative materials, such as biobased chemicals and intermediates sourced from plants, wastes, and microbial and mineral origins. The report presents a thorough analysis of the production processes, applications, and global market trends for essential biochemicals, including lysine, isosorbide, lactic acid, succinic acid, and many others. It also examines the current state and future prospects of the biobased chemicals market, highlighting key drivers, challenges, and opportunities.

The report offers a detailed assessment of the properties, production methods, and applications of synthetic biobased polymers, such as PLA, Bio-PET, and Bio-PP, as well as natural polymers like PHA and cellulose. The report analyzes the market dynamics, production capacities, and end-use markets for these sustainable alternatives to conventional plastics, providing valuable insights for manufacturers, suppliers, and investors.

Additionally, the report explores the potential of natural fiber plastics and composites, presenting a comprehensive analysis of various plant-based fibers, their properties, and applications across industries, including automotive, packaging, construction, and consumer goods. It evaluates the competitive landscape, market trends, and future outlook for this promising sector, enabling stakeholders to make informed decisions and capitalize on emerging opportunities.

Sustainable construction materials represent another key focus area of the report. It examines the latest trends and innovations in this field, such as hemp-based products, mycelium composites, green concrete, and advanced insulation solutions like aerogels. The report assesses the market drivers, challenges, and opportunities in the sustainable construction industry, providing valuable insights for companies looking to enhance their sustainability practices and gain a competitive edge.

The report also covers biobased packaging materials, sustainable textiles and apparel, biobased coatings and resins, biofuels, and sustainable electronics. It identifies key players, market trends, and growth potential across these industries, offering a comprehensive overview of the current market landscape and future prospects. 

The report also provides in-depth company profiles, detailed market data, and expert analysis, making it an indispensable resource for businesses, investors, and stakeholders seeking to understand and capitalize on the immense potential of biobased and sustainable materials.

Companies profiled include Aduro Clean Technologies, Agilyx, Alt.Leather, Alterra, Amsty, APK AG, Aquafil, Arcus, Arda Biomaterials, Avantium, Axens, BASF Chemcycling, Beyond Leather Materials ApS, BiologiQ, Biome Bioplastics, Biophilica, Bpacks, Braskem, Bucha Bio, Byogy Renewables, Caphenia, Carbios, CJ CheilJedang, DePoly,  Dow, Earthodic, Eastman Chemical, Ecovative, Ensyn, EREMA Group GmbH, Evolved by Nature, Extracthive, ExxonMobil, FlexSea, FORGE Hydrocarbons Corporation, Fych Technologies, Garbo, Gozen Bioworks, gr3n SA, Hyundai Chemical, cytos, Ioniqa, Itero, Kelpi, Kvasir Technologies, Licella, LignoPure GmbH, MeduSoil, Modern Meadow, Mura Technology, MycoWorks, Natural Fiber Welding, Notpla, Origin Materials, Pack2Earth, PersiSKIN, Plastic Energy, Plastogaz SA, Polybion, ProjectEx,  Polystyvert, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SA-Dynamics, Solugen, Stora Enso, Strong By Form, Sulapac, UBQ Materials, UNCAGED Innovations, Verde Bioresins, and ZymoChem.

Report contents include:

  • Biobased Chemicals and Intermediates
    • Biorefineries
    • Bio-based Feedstock and Land Use
    • Plant-based (Starch, Sugar Crops, Lignocellulosic Biomass, Plant Oils, Non-Edible Milk)
    • Waste (Food, Agricultural, Forestry, Aquaculture/Fishing, Municipal Solid, Industrial, Waste Oils)
    • Microbial & Mineral Sources (Microalgae, Macroalgae, Mineral)
    • Gaseous (Biogas, Syngas, Off Gases)
    • Company Profiles
  • Biobased Polymers and Plastics
    • Drop-in Bio-based Plastics
    • Novel Bio-based Plastics
    • Biodegradable and Compostable Plastics
    • Types and Key Market Players
    • Synthetic Biobased Polymers (PLA, PET, PTT, PEF, PA, PBAT, PBS, PE, PP)
    • Natural Biobased Polymers (PHA, Cellulose, Protein-based, Algal, Fungal, Chitosan)
    • Production by Region
    • End Use Markets (Packaging, Consumer Products, Automotive, Construction, Textiles, Electronics, Agriculture)
    • Lignin
    • Company Profiles
  • Natural Fiber Plastics and Composites
    • Introduction
    • Types of Natural Fibers (Plants, Animal, Wood-based)
    • Processing and Treatment
    • Interface and Compatibility
    • Manufacturing Processes
    • Global Market (Automotive, Packaging, Construction, Appliances, Consumer Electronics, Furniture)
    • Competitive Landscape
    • Future Outlook
    • Revenues (by End Use Market, Material Type, Plastic Type, Region)
    • Company Profiles
  • Sustainable Construction Materials
    • Market Overview
    • Types (Hemp-based, Mycelium-based, Sustainable Concrete, Natural Fiber Composites, Sustainable Insulation, Carbon Capture and Utilization, Green Steel, Aerogels)
    • Markets and Applications
    • Company Profiles
  • Biobased Packaging Materials
    • Market Overview
    • Materials (Synthetic Bio-based, Natural Bio-based)
    • Applications (Paper and Board, Food Packaging)
    • Biobased Films and Coatings
    • Carbon Capture Derived Materials
    • Global Markets (Flexible, Rigid, Coatings and Films)
    • Company Profiles
  • Sustainable Textiles and Apparel
    • Types of Bio-based Fibers (Natural, Man-made)
    • Bio-based Leather
    • Markets
    • Global Market Revenues (by Region, End Use Market)
    • Company Profiles
  • Biobased Coatings and Resins
    • Overview (Biobased Epoxy, Polyurethane, Others)
    • Types
    • Global Revenues (by Types, Market)
    • Company Profiles
  • Biofuels
    • Comparison to Fossil Fuels
    • Role in the Circular Economy
    • Market Drivers and Challenges
    • Liquid Biofuels Market
    • Global Biofuels Market (Diesel Substitutes, Gasoline Substitutes)
    • SWOT Analysis
    • Comparison of Biofuel Costs by Type
    • Types (Solid, Liquid, Gaseous, Conventional, Advanced)
    • Feedstocks (First to Fourth Generation)
    • Hydrocarbon Biofuels (Biodiesel, Renewable Diesel, Bio-aviation Fuel, Bio-naphtha)
    • Alcohol Fuels (Biomethanol, Ethanol, Biobutanol)
    • Biomass-based Gas (Biomethane, Biosyngas, Biohydrogen)
    • Chemical Recycling for Biofuels
    • Electrofuels
    • Algae-derived Biofuels
    • Green Ammonia
    • Biofuels from Carbon Capture (CO2 Capture, Direct Air Capture, Carbon Utilization)
    • Bio-oils
    • Refuse Derived Fuels
    • Company Profiles
  • Sustainable Electronics
    • Overview
    • Green Electronics Manufacturing
    • Global Market (PCB Manufacturing, Sustainable PCBs, Sustainable ICs)
    • Company Profiles
  • Biobased Adhesives and Sealants
    • Overview
    • Types
    • Global Revenues (by Types, Market)
    • Company Profiles


This product will be delivered within 1-3 business days.

Table of Contents


1           RESEARCH METHODOLOGY
2           INTRODUCTION
2.1         Definition of Biobased and Sustainable Materials
2.2         Importance and Benefits of Biobased and Sustainable Materials

3           BIOBASED CHEMICALS AND INTERMEDIATES
3.1         BIOREFINERIES
3.2         BIO-BASED FEEDSTOCK AND LAND USE
3.3         PLANT-BASED
3.3.1       STARCH
3.3.1.1     Overview
3.3.1.2     Sources
3.3.1.3     Global production
3.3.1.4     Lysine
3.3.1.4.1   Source
3.3.1.4.2   Applications
3.3.1.4.3   Global production
3.3.1.5     Glucose
3.3.1.5.1   HMDA
3.3.1.5.1.1 Overview
3.3.1.5.1.2 Sources
3.3.1.5.1.3 Applications
3.3.1.5.1.4 Global production
3.3.1.5.2   1,5-diaminopentane (DA5)
3.3.1.5.2.1 Overview
3.3.1.5.2.2 Sources
3.3.1.5.2.3 Applications
3.3.1.5.2.4 Global production
3.3.1.5.3   Sorbitol
3.3.1.5.3.1   Isosorbide
3.3.1.5.3.1.1 Overview
3.3.1.5.3.1.2 Sources
3.3.1.5.3.1.3 Applications
3.3.1.5.3.1.4 Global production
3.3.1.5.4    Lactic acid
3.3.1.5.4.1   Overview
3.3.1.5.4.2   D-lactic acid
3.3.1.5.4.3   L-lactic acid
3.3.1.5.4.4   Lactide
3.3.1.5.5    Itaconic acid
3.3.1.5.5.1   Overview
3.3.1.5.5.2   Sources
3.3.1.5.5.3   Applications
3.3.1.5.5.4   Global production
3.3.1.5.6    3-HP
3.3.1.5.6.1   Overview
3.3.1.5.6.2   Sources
3.3.1.5.6.3   Applications
3.3.1.5.6.4   Global production
3.3.1.5.6.5   Acrylic acid
3.3.1.5.6.5.1 Overview
3.3.1.5.6.5.2 Applications
3.3.1.5.6.5.3 Global production
3.3.1.5.6.6   1,3-Propanediol (1,3-PDO)
3.3.1.5.6.6.1 Overview
3.3.1.5.6.6.2 Applications
3.3.1.5.6.6.3 Global production
3.3.1.5.7     Succinic Acid
3.3.1.5.7.1   Overview
3.3.1.5.7.2   Sources
3.3.1.5.7.3   Applications
3.3.1.5.7.4   Global production
3.3.1.5.7.5   1,4-Butanediol (1,4-BDO)
3.3.1.5.7.5.1  Overview
3.3.1.5.7.5.2  Applications
3.3.1.5.7.5.3  Gobal production
3.3.1.5.7.6    Tetrahydrofuran (THF)
3.3.1.5.7.6.1  Overview
3.3.1.5.7.6.2  Applications
3.3.1.5.7.6.3  Global production
3.3.1.5.8      Adipic acid
3.3.1.5.8.1    Overview
3.3.1.5.8.2    Applications
3.3.1.5.8.3    Caprolactame
3.3.1.5.8.3.1  Overview
3.3.1.5.8.3.2  Applications
3.3.1.5.8.3.3  Global production
3.3.1.5.9      Isobutanol
3.3.1.5.9.1    Overview
3.3.1.5.9.2    Sources
3.3.1.5.9.3    Applications
3.3.1.5.9.4    Global production
3.3.1.5.9.5    p-Xylene
3.3.1.5.9.5.1  Overview
3.3.1.5.9.5.2  Sources
3.3.1.5.9.5.3  Applications
3.3.1.5.9.5.4  Global production
3.3.1.5.9.5.5  Terephthalic acid
3.3.1.5.9.5.6  Overview
3.3.1.5.10     1,3 Proppanediol
3.3.1.5.10.1   Overview
3.3.1.5.10.2   Sources
3.3.1.5.10.3   Applications
3.3.1.5.10.4   Global production
3.3.1.5.11     Monoethylene glycol (MEG)
3.3.1.5.11.1   Overview
3.3.1.5.11.2   Sources
3.3.1.5.11.3   Applications
3.3.1.5.11.4   Global production
3.3.1.5.12     Ethanol
3.3.1.5.12.1   Overview
3.3.1.5.12.2   Sources
3.3.1.5.12.3   Applications
3.3.1.5.12.4   Global production
3.3.1.5.12.5   Ethylene
3.3.1.5.12.5.1 Overview
3.3.1.5.12.5.2 Applications
3.3.1.5.12.5.3 Global production
3.3.1.5.12.5.4 Propylene
3.3.1.5.12.5.5 Vinyl chloride
3.3.1.5.12.6   Methly methacrylate
3.3.2          SUGAR CROPS
3.3.2.1        Saccharose
3.3.2.1.1      Aniline
3.3.2.1.1.1    Overview
3.3.2.1.1.2    Applications
3.3.2.1.1.3    Global production
3.3.2.1.2      Fructose
3.3.2.1.2.1    Overview
3.3.2.1.2.2    Applications
3.3.2.1.2.3    Global production
3.3.2.1.2.4    5-Hydroxymethylfurfural (5-HMF)
3.3.2.1.2.4.1  Overview
3.3.2.1.2.4.2  Applications
3.3.2.1.2.4.3  Global production
3.3.2.1.2.5    5-Chloromethylfurfural (5-CMF)
3.3.2.1.2.5.1  Overview
3.3.2.1.2.5.2  Applications
3.3.2.1.2.5.3  Global production
3.3.2.1.2.6    Levulinic Acid
3.3.2.1.2.6.1  Overview
3.3.2.1.2.6.2  Applications
3.3.2.1.2.6.3  Global production
3.3.2.1.2.7    FDME
3.3.2.1.2.7.1  Overview
3.3.2.1.2.7.2  Applications
3.3.2.1.2.7.3  Global production
3.3.2.1.2.8    2,5-FDCA
3.3.2.1.2.8.1  Overview
3.3.2.1.2.8.2   Applications
3.3.2.1.2.8.3   Global production
3.3.3           LIGNOCELLULOSIC BIOMASS
3.3.3.1         Levoglucosenone
3.3.3.1.        Overview
3.3.3.1.        Applications
3.3.3.1.        Global production
3.3.3.2         Hemicellulose
3.3.3.2.1       Overview
3.3.3.2.2       Biochemicals from hemicellulose
3.3.3.2.3       Global production
3.3.3.2.4       Furfural
3.3.3.2.4.1     Overview
3.3.3.2.4.2     Applications
3.3.3.2.4.3     Global production
3.3.3.2.4.4     Furfuyl alcohol
3.3.3.2.4.4.1   Overview
3.3.3.2.4.4.2   Applications
3.3.3.2.4.4.3   Global production
3.3.3.3         Lignin
3.3.3.3.1       Overview
3.3.3.3.2       Sources
3.3.3.3.3       Applications
3.3.3.3.3.1     Aromatic compounds
3.3.3.3.3.1.1   Benzene, toluene and xylene
3.3.3.3.3.1.2   Phenol and phenolic resins
3.3.3.3.3.1.3   Vanillin
3.3.3.3.3.2     Polymers
3.3.3.3.4       Global production
3.3.4           PLANT OILS
3.3.4.1         Overview
3.3.4.2         Glycerol
3.3.4.2.1       Overview
3.3.4.2.2       Applications
3.3.4.2.3       Global production
3.3.4.2.4       MPG
3.3.4.2.4.1     Overview
3.3.4.2.4.2     Applications
3.3.4.2.4.3     Global production
3.3.4.2.5       ECH
3.3.4.2.5.1     Overview
3.3.4.2.5.2     Applications
3.3.4.2.5.3     Global production
3.3.4.3         Fatty acids
3.3.4.3.1       Overview
3.3.4.3.2       Applications
3.3.4.3.3       Global production
3.3.4.4         Castor oil
3.3.4.4.1       Overview
3.3.4.4.2       Sebacic acid
3.3.4.4.2.1     Overview
3.3.4.4.2.2     Applications
3.3.4.4.2.3     Global production
3.3.4.4.3       11-Aminoundecanoic acid (11-AA)
3.3.4.4.3.1     Overview
3.3.4.4.3.2     Applications
3.3.4.4.3.3     Global production
3.3.4.5         Dodecanedioic acid (DDDA)
3.3.4.5.1       Overview
3.3.4.5.2       Applications
3.3.4.5.3       Global production
3.3.4.6         Pentamethylene diisocyanate
3.3.4.6.1       Overview
3.3.4.6.2       Applications
3.3.4.6.3       Global production
3.3.5           NON-EDIBIBLE MILK
3.3.5.1         Casein
3.3.5.1.1       Overview
3.3.5.1.2       Applications
3.3.5.1.3       Global production
3.4             WASTE
3.4.1           Food waste
3.4.1.1         Overview
3.4.1.2         Products and applications
3.4.1.2.1       Global production
3.4.2           Agricultural waste
3.4.2.1         Overview
3.4.2.2         Products and applications
3.4.2.3         Global production
3.4.3           Forestry waste
3.4.3.1         Overview
3.4.3.2         Products and applications
3.4.3.3         Global production
3.4.4           Aquaculture/fishing waste
3.4.4.1         Overview
3.4.4.2         Products and applications
3.4.4.3         Global production
3.4.5           Municipal solid waste
3.4.5.1         Overview
3.4.5.2         Products and applications
3.4.5.3         Global production
3.4.6           Industrial waste
3.4.6.1         Overview
3.4.7           Waste oils
3.4.7.1         Overview
3.4.7.2         Products and applications
3.4.7.3         Global production
3.5             MICROBIAL & MINERAL SOURCES
3.5.1           Microalgae
3.5.1.1         Overview
3.5.1.2         Products and applications
3.5.1.3         Global production
3.5.2           Macroalgae
3.5.2.1         Overview
3.5.2.2         Products and applications
3.5.2.3         Global production
3.5.3           Mineral sources
3.5.3.1         Overview
3.5.3.2         Products and applications
3.6             GASEOUS
3.6.1           Biogas
3.6.1.1         Overview
3.6.1.2         Products and applications
3.6.1.3         Global production
3.6.2           Syngas
3.6.2.1         Overview
3.6.2.2         Products and applications
3.6.2.3         Global production
3.6.3           Off gases - fermentation CO2, CO
3.6.3.1         Overview
3.6.3.2         Products and applications
3.7            COMPANY PROFILES  (115 company profiles)

4           BIOBASED POLYMERS AND PLASTICS
4.1         Overview
4.1.1       Drop-in bio-based plastics
4.1.2       Novel bio-based plastics
4.2         Biodegradable and compostable plastics
4.2.1       Biodegradability
4.2.2       Compostability
4.3         Types
4.4         Key market players
4.5         Synthetic biobased polymers
4.5.1       Polylactic acid (Bio-PLA)
4.5.1.1     Market analysis
4.5.1.2     Production
4.5.1.3     Producers and production capacities, current and planned
4.5.1.3.1   Lactic acid producers and production capacities
4.5.1.3.2   PLA producers and production capacities
4.5.1.3.3   Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
4.5.2       Polyethylene terephthalate (Bio-PET)
4.5.2.1     Market analysis
4.5.2.2     Producers and production capacities
4.5.2.3     Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
4.5.3       Polytrimethylene terephthalate (Bio-PTT)
4.5.3.1     Market analysis
4.5.3.2     Producers and production capacities
4.5.3.3     Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
4.5.4       Polyethylene furanoate (Bio-PEF)
4.5.4.1     Market analysis
4.5.4.2     Comparative properties to PET
4.5.4.3     Producers and production capacities
4.5.4.3.1   FDCA and PEF producers and production capacities
4.5.4.3.2   Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).
4.5.5       Polyamides (Bio-PA)
4.5.5.1     Market analysis
4.5.5.2     Producers and production capacities
4.5.5.3     Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
4.5.6       Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
4.5.6.1     Market analysis
4.5.6.2     Producers and production capacities
4.5.6.3     Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
4.5.7       Polybutylene succinate (PBS) and copolymers
4.5.7.1     Market analysis
4.5.7.2     Producers and production capacities
4.5.7.3     Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
4.5.8       Polyethylene (Bio-PE)
4.5.8.1     Market analysis
4.5.8.2     Producers and production capacities
4.5.8.3     Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).
4.5.9       Polypropylene (Bio-PP)
4.5.9.1     Market analysis
4.5.9.2     Producers and production capacities
4.5.9.3     Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
4.6         Natural biobased polymers
4.6.1       Polyhydroxyalkanoates (PHA)
4.6.1.1     Technology description
4.6.1.2     Types
4.6.1.2.1   PHB
4.6.1.2.2   PHBV
4.6.1.3     Synthesis and production processes
4.6.1.4     Market analysis
4.6.1.5     Commercially available PHAs
4.6.1.6     Markets for PHAs
4.6.1.6.1   Packaging
4.6.1.6.2   Cosmetics
4.6.1.6.2.1  PHA microspheres
4.6.1.6.3    Medical
4.6.1.6.3.1  Tissue engineering
4.6.1.6.3.2  Drug delivery
4.6.1.6.4     Agriculture
4.6.1.6.4.1   Mulch film
4.6.1.6.4.2   Grow bags
4.6.1.7       Producers and production capacities
4.6.1.8       PHA production capacities 2019-2035 (1,000 tonnes)
4.6.2         Cellulose
4.6.2.1       Microfibrillated cellulose (MFC)
4.6.2.1.1     Market analysis
4.6.2.1.2     Producers and production capacities
4.6.2.2       Nanocellulose
4.6.2.2.1             Cellulose nanocrystals
4.6.2.2.1.1         Synthesis
4.6.2.2.1.2         Properties
4.6.2.2.1.3         Production
4.6.2.2.1.4         Applications
4.6.2.2.1.5         Market analysis
4.6.2.2.1.6         Producers and production capacities
4.6.2.2.2             Cellulose nanofibers
4.6.2.2.2.1         Applications
4.6.2.2.2.2         Market analysis
4.6.2.2.2.3         Producers and production capacities
4.6.2.2.3             Bacterial Nanocellulose (BNC)
4.6.2.2.3.1         Production
4.6.2.2.3.2         Applications
4.6.3     Protein-based bioplastics
4.6.3.1 Types, applications and producers
4.6.4     Algal and fungal
4.6.4.1 Algal
4.6.4.1.1             Advantages
4.6.4.1.2             Production
4.6.4.1.3             Producers
4.6.4.2 Mycelium
4.6.4.2.1             Properties
4.6.4.2.2             Applications
4.6.4.2.3             Commercialization
4.6.5     Chitosan
4.6.5.1 Technology description
4.7         Production by region
4.7.1     North America
4.7.2     Europe
4.7.3     Asia-Pacific
4.7.3.1 China
4.7.3.2 Japan
4.7.3.3 Thailand
4.7.3.4 Indonesia
4.7.4     Latin America
4.8         End use markets
4.8.1     Packaging
4.8.1.1 Processes for bioplastics in packaging
4.8.1.2 Applications
4.8.1.3 Flexible packaging
4.8.1.3.1             Production volumes 2019-2035
4.8.1.4 Rigid packaging
4.8.1.4.1             Production volumes 2019-2035
4.8.2     Consumer products
4.8.2.1 Applications
4.8.2.2 Production volumes 2019-2035
4.8.3     Automotive
4.8.3.1 Applications
4.8.3.2 Production volumes 2019-2035
4.8.4     Construction
4.8.4.1 Applications
4.8.4.2 Production volumes 2019-2035
4.8.5     Textiles
4.8.5.1 Apparel
4.8.5.2 Footwear
4.8.5.3 Medical textiles
4.8.5.4 Production volumes 2019-2035
4.8.6     Electronics
4.8.6.1 Applications
4.8.6.2 Production volumes 2019-2035
4.8.7     Agriculture and horticulture
4.8.7.1 Production volumes 2019-2035
4.9         Lignin
4.9.1     Introduction
4.9.1.1 What is lignin?
4.9.1.1.1             Lignin structure
4.9.1.2 Types of lignin
4.9.1.2.1             Sulfur containing lignin
4.9.1.2.2             Sulfur-free lignin from biorefinery process
4.9.1.3 Properties
4.9.1.4 The lignocellulose biorefinery
4.9.1.5 Markets and applications
4.9.1.6 Challenges for using lignin
4.9.2     Lignin production processes
4.9.2.1 Lignosulphonates
4.9.2.2 Kraft Lignin
4.9.2.2.1             LignoBoost process
4.9.2.2.2             LignoForce method
4.9.2.2.3             Sequential Liquid Lignin Recovery and Purification
4.9.2.2.4             A-Recovery+
4.9.2.3 Soda lignin
4.9.2.4 Biorefinery lignin
4.9.2.4.1             Commercial and pre-commercial biorefinery lignin production facilities and  processes
4.9.2.5 Organosolv lignins
4.9.2.6 Hydrolytic lignin
4.9.3     Markets for lignin
4.9.3.1 Market drivers and trends for lignin
4.9.3.2 Production capacities
4.9.3.2.1             Technical lignin availability (dry ton/y)
4.9.3.2.2             Biomass conversion (Biorefinery)
4.9.3.3 Estimated consumption of lignin
4.9.3.4 Prices
4.9.3.5 Heat and power energy
4.9.3.6 Pyrolysis and syngas
4.9.3.7 Aromatic compounds
4.9.3.7.1             Benzene, toluene and xylene
4.9.3.7.2             Phenol and phenolic resins
4.9.3.7.3             Vanillin
4.9.3.8 Plastics and polymers
4.10       COMPANY PROFILES (516 company profiles

5             NATURAL FIBER PLASTICS AND COMPOSITES
5.1         Introduction
5.1.1     What are natural fiber materials?
5.1.2     Benefits of natural fibers over synthetic
5.1.3     Markets and applications for natural fibers
5.1.4     Commercially available natural fiber products
5.1.5     Market drivers for natural fibers
5.1.6     Market challenges
5.1.7     Wood flour as a plastic filler
5.2         Types of natural fibers in plastic composites
5.2.1     Plants
5.2.1.1 Seed fibers
5.2.1.1.1             Kapok
5.2.1.1.2             Luffa
5.2.1.2 Bast fibers
5.2.1.2.1             Jute
5.2.1.2.2             Hemp
5.2.1.2.3             Flax
5.2.1.2.4             Ramie
5.2.1.2.5             Kenaf
5.2.1.3 Leaf fibers
5.2.1.3.1             Sisal
5.2.1.3.2             Abaca
5.2.1.4 Fruit fibers
5.2.1.4.1             Coir
5.2.1.4.2             Banana
5.2.1.4.3             Pineapple
5.2.1.5 Stalk fibers from agricultural residues
5.2.1.5.1             Rice fiber
5.2.1.5.2             Corn
5.2.1.6 Cane, grasses and reed
5.2.1.6.1             Switchgrass
5.2.1.6.2             Sugarcane (agricultural residues)
5.2.1.6.3             Bamboo
5.2.1.6.4             Fresh grass (green biorefinery)
5.2.1.7 Modified natural polymers
5.2.1.7.1             Mycelium
5.2.1.7.2             Chitosan
5.2.1.7.3             Alginate
5.2.2     Animal (fibrous protein)
5.2.2.1 Silk fiber
5.2.3     Wood-based natural fibers
5.2.3.1 Cellulose fibers
5.2.3.1.1             Market overview
5.2.3.1.2             Producers
5.2.3.2 Microfibrillated cellulose (MFC)
5.2.3.2.1             Market overview
5.2.3.2.2             Producers
5.2.3.3 Cellulose nanocrystals
5.2.3.3.1             Market overview
5.2.3.3.2             Producers
5.2.3.4 Cellulose nanofibers
5.2.3.4.1             Market overview
5.2.3.4.2             Producers
5.3         Processing and Treatment of Natural Fibers
5.4         Interface and Compatibility of Natural Fibers with Plastic Matrices
5.4.1     Adhesion and Bonding
5.4.2     Moisture Absorption and Dimensional Stability
5.4.3     Thermal Expansion and Compatibility
5.4.4     Dispersion and Distribution
5.4.5     Matrix Selection
5.4.6     Fiber Content and Alignment
5.4.7     Manufacturing Techniques
5.5         Manufacturing processes
5.5.1     Injection molding
5.5.2     Compression moulding
5.5.3     Extrusion
5.5.4     Thermoforming
5.5.5     Thermoplastic pultrusion
5.5.6     Additive manufacturing (3D printing)
5.6         Global market for natural fibers
5.6.1     Automotive
5.6.1.1 Applications
5.6.1.2 Commercial production
5.6.1.3 SWOT analysis
5.6.2     Packaging
5.6.2.1 Applications
5.6.2.2 SWOT analysis
5.6.3     Construction
5.6.3.1 Applications
5.6.3.2 SWOT analysis
5.6.4     Appliances
5.6.4.1 Applications
5.6.4.2 SWOT analysis
5.6.5     Consumer electronics
5.6.5.1 Applications
5.6.5.2 SWOT analysis
5.6.6     Furniture
5.6.6.1 Applications
5.6.6.2 SWOT analysis
5.7         Competitive landscape
5.8         Future outlook
5.9         Revenues
5.9.1     By end use market
5.9.2     By Material Type
5.9.3     By Plastic Type
5.9.4     By region
5.10       Company profiles (67 company profiles)

6            SUSTAINABLE CONSTRUCTION MATERIALS
6.1         Market overview
6.1.1     Benefits of Sustainable Construction
6.1.2     Global Trends and Drivers
6.1.3     Global revenues
6.1.3.1 By materials type
6.1.3.2 By market
6.2         Types
6.2.1     Established bio-based construction materials
6.2.2     Hemp-based Materials
6.2.2.1 Hemp Concrete (Hempcrete)
6.2.2.2 Hemp Fiberboard
6.2.2.3 Hemp Insulation
6.2.3     Mycelium-based Materials
6.2.4     Sustainable Concrete and Cement Alternatives
6.2.4.1 Self-healing concrete
6.2.4.2 Bioconcrete
6.2.4.3 Fibre concrete
6.2.4.4 Microalgae biocement
6.2.4.5 Carbon-negative concrete
6.2.5     Natural Fiber Composites
6.2.6     Sustainable Insulation Materials
6.2.6.1 Cellulose Insulation
6.2.6.1.1             Cellulose nanofibers
6.2.6.1.1.1         Sandwich composites
6.2.6.1.1.2         Cement additives
6.2.6.1.1.3         Pump primers
6.2.6.1.1.4         Thermal insulation and damping
6.2.6.2 Aerogel Insulation
6.2.6.2.1             Silica aerogels
6.2.6.2.1.1         Properties
6.2.6.2.1.2         Thermal conductivity
6.2.6.2.1.3         Mechanical
6.2.6.2.1.4         Silica aerogel precursors
6.2.6.2.1.5         Products
6.2.6.2.1.5.1     Monoliths
6.2.6.2.1.5.2     Powder
6.2.6.2.1.5.3     Granules
6.2.6.2.1.5.4     Blankets
6.2.6.2.1.5.5     Aerogel boards
6.2.6.2.1.5.6     Aerogel renders
6.2.6.2.1.6         3D printing of aerogels
6.2.6.2.1.7         Silica aerogel from sustainable feedstocks
6.2.6.2.1.8         Silica composite aerogels
6.2.6.2.1.8.1     Organic crosslinkers
6.2.6.2.1.9         Cost of silica aerogels
6.2.6.2.1.10       Main players
6.2.6.2.2             Aerogel-like foam materials
6.2.6.2.2.1         Properties
6.2.6.2.2.2         Applications
6.2.6.2.3             Metal oxide aerogels
6.2.6.2.4             Organic aerogels
6.2.6.2.4.1         Polymer aerogels
6.2.6.2.5             Biobased and sustainable aerogels (bio-aerogels)
6.2.6.2.6             Cellulose aerogels
6.2.6.2.6.1         Cellulose nanofiber (CNF) aerogels
6.2.6.2.6.2         Cellulose nanocrystal aerogels
6.2.6.2.6.3         Bacterial nanocellulose aerogels
6.2.6.3 Lignin aerogels
6.2.6.4 Alginate aerogels
6.2.6.5 Starch aerogels
6.2.6.6 Chitosan aerogels
6.2.6.7 Protein aerogels
6.2.6.7.1             Albumin aerogels
6.2.6.7.2             Casein aerogels
6.2.6.7.3             Gelatin aerogels
6.2.6.8 Silk fiber
6.2.6.8.1             Carbon aerogels
6.2.6.8.2             Carbon nanotube aerogels
6.2.6.8.3             Graphene and graphite aerogels
6.2.6.8.4             Additive manufacturing (3D printing)
6.2.6.9 Graphene oxide
6.2.6.10               Carbon nitride
6.2.6.11               Gold
6.2.6.12               Cellulose
6.2.6.12.1           Hybrid aerogels
6.2.7     Carbon capture and utilization
6.2.7.1 Overview
6.2.7.2 Market structure
6.2.7.3 CCUS technologies in the cement industry
6.2.7.4 Products
6.2.7.4.1             Carbonated aggregates
6.2.7.4.2             Additives during mixing
6.2.7.4.3             Carbonates from natural minerals
6.2.7.4.4             Carbonates from waste
6.2.7.5 Concrete curing
6.2.7.6 Costs
6.2.7.7 Challenges
6.2.8     Green steel
6.2.9     Current Steelmaking processes
6.2.10   Decarbonization target and policies
6.2.10.1               EU Carbon Border Adjustment Mechanism (CBAM)
6.2.11   Advances in clean production technologies
6.2.12   Production technologies
6.2.12.1               The role of hydrogen
6.2.12.2               Comparative analysis
6.2.12.3               Hydrogen Direct Reduced Iron (DRI)
6.2.12.4               Electrolysis
6.2.12.5               Carbon Capture, Utilization and Storage (CCUS)
6.2.12.6               Biochar replacing coke
6.2.12.7               Hydrogen Blast Furnace
6.2.12.8               Renewable energy powered processes
6.2.12.9               Flash ironmaking
6.2.12.10            Hydrogen Plasma Iron Ore Reduction
6.2.12.11            Ferrous Bioprocessing
6.2.12.12            Microwave Processing
6.2.12.13            Additive Manufacturing
6.2.12.14            Technology readiness level (TRL)
6.2.13   Properties
6.3         Markets and applications
6.3.1     Residential Buildings
6.3.2     Commercial and Office Buildings
6.3.3     Infrastructure
6.4         Company profiles    (112 company profiles)

7             BIOBASED PACKAGING MATERIALS
7.1         Market overview
7.1.1     Current global packaging market and materials
7.1.2     Market trends
7.1.3     Drivers for recent growth in bioplastics in packaging
7.1.4     Challenges for bio-based and sustainable packaging
7.2         Materials
7.2.1     Materials innovation
7.2.2     Active packaging
7.2.3     Monomaterial packaging
7.2.4     Conventional polymer materials used in packaging
7.2.4.1 Polyolefins: Polypropylene and polyethylene
7.2.4.2 PET and other polyester polymers
7.2.4.3 Renewable and bio-based polymers for packaging
7.2.4.4 Comparison of synthetic fossil-based and bio-based polymers
7.2.4.5 Processes for bioplastics in packaging
7.2.4.6 End-of-life treatment of bio-based and sustainable packaging
7.3         Synthetic bio-based packaging materials
7.3.1     Polylactic acid (Bio-PLA)
7.3.1.1 Market analysis
7.3.1.2 Producers and production capacities, current and planned
7.3.1.2.1             Lactic acid producers and production capacities
7.3.1.2.2             LA producers and production capacities
7.3.2     Polyethylene terephthalate (Bio-PET)
7.3.2.1 Market analysis
7.3.2.2 Producers and production capacities
7.3.3     Polytrimethylene terephthalate (Bio-PTT)
7.3.3.1 Market analysis
7.3.3.2 Producers and production capacities
7.3.4     Polyethylene furanoate (Bio-PEF)
7.3.4.1 Market analysis
7.3.4.2 Comparative properties to PET
7.3.4.3 Producers and production capacities
7.3.4.3.1             FDCA and PEF producers and production capacities
7.3.5     Polyamides (Bio-PA)
7.3.5.1 Market analysis
7.3.5.2 Producers and production capacities
7.3.6     Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
7.3.6.1 Market analysis
7.3.6.2 Producers and production capacities
7.3.7     Polybutylene succinate (PBS) and copolymers
7.3.7.1 Market analysis
7.3.7.2 Producers and production capacities
7.3.8     Polyethylene furanoate (Bio-PEF)
7.3.8.1 Market analysis
7.3.8.2 Comparative properties to PET
7.3.8.3 Producers and production capacities
7.3.8.3.1             FDCA and PEF producers and production capacities
7.3.8.3.2             Polyethylene furanoate (Bio-PEF) production capacities 2019-2035 (1,000 tons).
7.3.9     Polyethylene (Bio-PE)
7.3.9.1 Market analysis
7.3.9.2 Producers and production capacities
7.3.10   Polypropylene (Bio-PP)
7.3.10.1               Market analysis
7.3.10.2               Producers and production capacities
7.4         Natural bio-based packaging materials
7.4.1     Polyhydroxyalkanoates (PHA)
7.4.1.1 Technology description
7.4.1.2 Types
7.4.1.2.1             PHB
7.4.1.2.2             PHBV
7.4.1.3 Synthesis and production processes
7.4.1.4 Market analysis
7.4.1.5 Commercially available PHAs
7.4.1.6 PHAS in packaging
7.4.1.7 PHA production capacities 2019-2035 (1,000 tons)
7.4.2     Starch-based blends
7.4.2.1 Properties
7.4.2.2 Applications in packaging
7.4.3     Cellulose
7.4.3.1 Feedstocks
7.4.3.1.1             Wood
7.4.3.1.2             Plant
7.4.3.1.3             Tunicate
7.4.3.1.4             Algae
7.4.3.1.5             Bacteria
7.4.3.2 Microfibrillated cellulose (MFC)
7.4.3.2.1             Properties
7.4.3.3 Nanocellulose
7.4.3.3.1             Cellulose nanocrystals
7.4.3.3.1.1         Applications in packaging
7.4.3.3.2             Cellulose nanofibers
7.4.3.3.2.1         Applications in packaging
7.4.3.3.2.1.1     Reinforcement and barrier
7.4.3.3.2.1.2     Biodegradable food packaging foil and films
7.4.3.3.2.1.3     Paperboard coatings
7.4.3.3.3             Bacterial Nanocellulose (BNC)
7.4.3.3.3.1         Applications in packaging
7.4.4     Protein-based bioplastics in packaging
7.4.5     Lipids and waxes for packaging
7.4.6     Seaweed-based packaging
7.4.6.1 Production
7.4.6.2 Applications in packaging
7.4.6.3 Producers
7.4.7     Mycelium
7.4.7.1 Applications in packaging
7.4.8     Chitosan
7.4.8.1 Applications in packaging
7.4.9     Bio-naphtha
7.4.9.1 Overview
7.4.9.2 Markets and applications
7.5         Applications
7.5.1     Paper and board packaging
7.5.2     Food packaging
7.5.2.1 Bio-Based films and trays
7.5.2.2 Bio-Based pouches and bags
7.5.2.3 Bio-Based textiles and nets
7.5.2.4 Bioadhesives
7.5.2.4.1             Starch
7.5.2.4.2             Cellulose
7.5.2.4.3             Protein-Based
7.5.2.5 Barrier coatings and films
7.5.2.5.1             Polysaccharides
7.5.2.5.1.1         Chitin
7.5.2.5.1.2         Chitosan
7.5.2.5.1.3         Starch
7.5.2.5.2             Poly(lactic acid) (PLA)
7.5.2.5.3             Poly(butylene Succinate)
7.5.2.5.4             Functional Lipid and Proteins Based Coatings
7.5.2.6 Active and Smart Food Packaging
7.5.2.6.1             Active Materials and Packaging Systems
7.5.2.6.2             Intelligent and Smart Food Packaging
7.5.2.7 Antimicrobial films and agents
7.5.2.7.1             Natural
7.5.2.7.2             Inorganic nanoparticles
7.5.2.7.3             Biopolymers
7.5.2.8 Bio-based Inks and Dyes
7.5.2.9 Edible films and coatings
7.6         Biobased films and coatings in packaging
7.6.1     Challenges using bio-based paints and coatings
7.6.2     Types of bio-based coatings and films in packaging
7.6.2.1 Polyurethane coatings
7.6.2.1.1             Properties
7.6.2.1.2             Bio-based polyurethane coatings
7.6.2.1.3             Products
7.6.2.2 Acrylate resins
7.6.2.2.1             Properties
7.6.2.2.2             Bio-based acrylates
7.6.2.2.3             Products
7.6.2.3 Polylactic acid (Bio-PLA)
7.6.2.3.1             Properties
7.6.2.3.2             Bio-PLA coatings and films
7.6.2.4 Polyhydroxyalkanoates (PHA) coatings
7.6.2.5 Cellulose coatings and films
7.6.2.5.1             Microfibrillated cellulose (MFC)
7.6.2.5.2             Cellulose nanofibers
7.6.2.5.2.1         Properties
7.6.2.5.2.2         Product developers
7.6.2.6 Lignin coatings
7.6.2.7 Protein-based biomaterials for coatings
7.6.2.7.1             Plant derived proteins
7.6.2.7.2             Animal origin proteins
7.7         Carbon capture derived materials for packaging
7.7.1     Benefits of carbon utilization for plastics feedstocks
7.7.2     CO2-derived polymers and plastics
7.7.3     CO2 utilization products
7.8         Global biobased packaging markets
7.8.1     Flexible packaging
7.8.2     Rigid packaging
7.8.3     Coatings and films
7.9         Company profiles    (220 company profiles)

8             SUSTAINABLE TEXTILES AND APPAREL
8.1         Types of bio-based fibres
8.1.1     Natural fibres
8.1.2     Man-made bio-based fibres
8.2         Natural fibres
8.3         Man-made cellulosic fibres
8.4         Bio-based synthetics
8.5         Recyclability of bio-based fibres
8.6         Bio-based leather
8.6.1     Properties of bio-based leathers
8.6.1.1 Tear strength.
8.6.1.2 Tensile strength
8.6.1.3 Bally flexing
8.6.2     Comparison with conventional leathers
8.6.3     Comparative analysis of bio-based leathers
8.6.4     Plant-based leather
8.6.4.1 Overview
8.6.4.2 Production processes
8.6.4.2.1             Feedstocks
8.6.4.2.1.1         Agriculture Residues
8.6.4.2.1.2         Food Processing Waste
8.6.4.2.1.3         Invasive Plants
8.6.4.2.1.4         Culture-Grown Inputs
8.6.4.2.2             Textile-Based
8.6.4.2.3             Bio-Composite
8.6.4.3 Products
8.6.4.4 Market players
8.6.5     Mycelium leather
8.6.5.1 Overview
8.6.5.2 Production process
8.6.5.2.1             Growth conditions
8.6.5.2.2             Tanning Mycelium Leather
8.6.5.2.3             Dyeing Mycelium Leather
8.6.5.3 Products
8.6.5.4 Market players
8.6.6     Microbial leather
8.6.6.1 Overview
8.6.6.2 Production process
8.6.6.3 Fermentation conditions
8.6.6.4 Harvesting
8.6.6.5 Products
8.6.6.6 Market players
8.6.7     Lab grown leather
8.6.7.1 Overview
8.6.7.2 Production process
8.6.7.3 Products
8.6.7.4 Market players
8.6.8     Protein-based leather
8.6.8.1 Overview
8.6.8.2 Production process
8.6.8.3 Commercial activity
8.6.9     Sustainable textiles coatings and dyes
8.6.9.1 Overview
8.6.9.1.1             Coatings
8.6.9.1.2             Dyes
8.6.9.2 Commercial activity
8.7         Markets
8.7.1     Footwear
8.7.2     Fashion & Accessories
8.7.3     Automotive & Transport
8.7.4     Furniture
8.8         Global market revenues
8.8.1     By region
8.8.2     By end use market
8.9         Company profiles    (71 company profiles)

9             BIOBASED COATINGS AND RESINS
9.1         Drop-in replacements
9.2         Bio-based resins
9.3         Reducing carbon footprint in industrial and protective coatings
9.4         Market drivers
9.5         Challenges using bio-based coatings
9.6         Types
9.6.1     Eco-friendly coatings technologies
9.6.1.1 UV-cure
9.6.1.2 Waterborne coatings
9.6.1.3 Treatments with less or no solvents
9.6.1.4 Hyperbranched polymers for coatings
9.6.1.5 Powder coatings
9.6.1.6 High solid (HS) coatings
9.6.1.7 Use of bio-based materials in coatings
9.6.1.7.1             Biopolymers
9.6.1.7.2             Coatings based on agricultural waste
9.6.1.7.3             Vegetable oils and fatty acids
9.6.1.7.4             Proteins
9.6.1.7.5             Cellulose
9.6.1.7.6             Plant-Based wax coatings
9.6.2     Barrier coatings
9.6.2.1 Polysaccharides
9.6.2.1.1             Chitin
9.6.2.1.2             Chitosan
9.6.2.1.3             Starch
9.6.2.2 Poly(lactic acid) (PLA)
9.6.2.3 Poly(butylene Succinate
9.6.2.4 Functional Lipid and Proteins Based Coatings
9.6.3     Alkyd coatings
9.6.3.1 Alkyd resin properties
9.6.3.2 Bio-based alkyd coatings
9.6.3.3 Products
9.6.4     Polyurethane coatings
9.6.4.1 Properties
9.6.4.2 Bio-based polyurethane coatings
9.6.4.2.1             Bio-based polyols
9.6.4.2.2             Non-isocyanate polyurethane (NIPU)
9.6.4.3 Products
9.6.5     Epoxy coatings
9.6.5.1 Properties
9.6.5.2 Bio-based epoxy coatings
9.6.5.3 Products
9.6.6     Acrylate resins
9.6.6.1 Properties
9.6.6.2 Bio-based acrylates
9.6.6.3 Products
9.6.7     Polylactic acid (Bio-PLA)
9.6.7.1 Properties
9.6.7.2 Bio-PLA coatings and films
9.6.8     Polyhydroxyalkanoates (PHA)
9.6.8.1 Properties
9.6.8.2 PHA coatings
9.6.8.3 Commercially available PHAs
9.6.9     Cellulose
9.6.9.1 Microfibrillated cellulose (MFC)
9.6.9.1.1             Properties
9.6.9.1.2             Applications in coatings
9.6.9.2 Cellulose nanofibers
9.6.9.2.1             Properties
9.6.9.2.2             Applications in coatings
9.6.9.3 Cellulose nanocrystals
9.6.9.4 Bacterial Nanocellulose (BNC)
9.6.10   Rosins
9.6.11   Bio-based carbon black
9.6.11.1               Lignin-based
9.6.11.2               Algae-based
9.6.12   Lignin coatings
9.6.13   Edible films and coatings
9.6.14   Antimicrobial films and agents
9.6.14.1               Natural
9.6.14.2               Inorganic nanoparticles
9.6.14.3               Biopolymers
9.6.15   Nanocoatings
9.6.16   Protein-based biomaterials for coatings
9.6.16.1               Plant derived proteins
9.6.16.2               Animal origin proteins
9.6.17   Algal coatings
9.6.18   Polypeptides
9.7         Global revenues
9.7.1     By types
9.7.2     By market
9.8         Company profiles  (167 company profiles)

10           BIOFUELS
10.1       Comparison to fossil fuels
10.2       Role in the circular economy
10.3       Market drivers
10.4       Market challenges
10.5       Liquid biofuels market
10.5.1   Liquid biofuel production and consumption (in thousands of m3), 2000-2022
10.5.2   Liquid biofuels market 2020-2035, by type and production.
10.6       The global biofuels market
10.6.1   Diesel substitutes and alternatives
10.6.2   Gasoline substitutes and alternatives
10.7       SWOT analysis: Biofuels market
10.8       Comparison of biofuel costs 2023, by type
10.9       Types
10.9.1   Solid Biofuels
10.9.2   Liquid Biofuels
10.9.3   Gaseous Biofuels
10.9.4   Conventional Biofuels
10.9.5   Advanced Biofuels
10.10    Feedstocks
10.10.1 First-generation (1-G)
10.10.2 Second-generation (2-G)
10.10.2.1            Lignocellulosic wastes and residues
10.10.2.2            Biorefinery lignin
10.10.3 Third-generation (3-G)
10.10.3.1            Algal biofuels
10.10.3.1.1        Properties
10.10.3.1.2        Advantages
10.10.4 Fourth-generation (4-G)
10.10.5 Advantages and disadvantages, by generation
10.10.6 Energy crops
10.10.6.1            Feedstocks
10.10.6.2            SWOT analysis
10.10.7 Agricultural residues
10.10.7.1            Feedstocks
10.10.7.2            SWOT analysis
10.10.8 Manure, sewage sludge and organic waste
10.10.8.1            Processing pathways
10.10.8.2            SWOT analysis
10.10.9 Forestry and wood waste
10.10.9.1            Feedstocks
10.10.9.2            SWOT analysis
10.10.10             Feedstock costs
10.11    Hydrocarbon biofuels
10.11.1 Biodiesel
10.11.1.1            Biodiesel by generation
10.11.1.2            SWOT analysis
10.11.1.3            Production of biodiesel and other biofuels
10.11.1.3.1        Pyrolysis of biomass
10.11.1.3.2        Vegetable oil transesterification
10.11.1.3.3        Vegetable oil hydrogenation (HVO)
10.11.1.3.3.1    Production process
10.11.1.3.4        Biodiesel from tall oil
10.11.1.3.5        Fischer-Tropsch BioDiesel
10.11.1.3.6        Hydrothermal liquefaction of biomass
10.11.1.3.7        CO2 capture and Fischer-Tropsch (FT)
10.11.1.3.8        Dymethyl ether (DME)
10.11.1.4            Prices
10.11.1.5            Global production and consumption
10.11.2 Renewable diesel
10.11.2.1            Production
10.11.2.2            SWOT analysis
10.11.2.3            Global consumption
10.11.2.4            Prices
10.11.3 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
10.11.3.1            Description
10.11.3.2            SWOT analysis
10.11.3.3            Global production and consumption
10.11.3.4            Production pathways
10.11.3.5            Prices
10.11.3.6            Bio-aviation fuel production capacities
10.11.3.7            Market challenges
10.11.3.8            Global consumption
10.11.4 Bio-naphtha
10.11.4.1            Overview
10.11.4.2            SWOT analysis
10.11.4.3            Markets and applications
10.11.4.4            Prices
10.11.4.5            Production capacities, by producer, current and planned
10.11.4.6            Production capacities, total (tonnes), historical, current and planned
10.12    Alcohol fuels
10.12.1 Biomethanol
10.12.1.1            SWOT analysis
10.12.1.2            Methanol-to gasoline technology
10.12.1.2.1        Production processes
10.12.1.2.1.1    Anaerobic digestion
10.12.1.2.1.2    Biomass gasification
10.12.1.2.1.3    Power to Methane
10.12.2 Ethanol
10.12.2.1            Technology description
10.12.2.2            1G Bio-Ethanol
10.12.2.3            SWOT analysis
10.12.2.4            Ethanol to jet fuel technology
10.12.2.5            Methanol from pulp & paper production
10.12.2.6            Sulfite spent liquor fermentation
10.12.2.7            Gasification
10.12.2.7.1        Biomass gasification and syngas fermentation
10.12.2.7.2        Biomass gasification and syngas thermochemical conversion
10.12.2.8            CO2 capture and alcohol synthesis
10.12.2.9            Biomass hydrolysis and fermentation
10.12.2.9.1        Separate hydrolysis and fermentation
10.12.2.9.2        Simultaneous saccharification and fermentation (SSF)
10.12.2.9.3        Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
10.12.2.9.4        Simultaneous saccharification and co-fermentation (SSCF)
10.12.2.9.5        Direct conversion (consolidated bioprocessing) (CBP)
10.12.2.10         Global ethanol consumption
10.12.3 Biobutanol
10.12.3.1            Production
10.12.3.2            Prices
10.13    Biomass-based Gas
10.13.1 Feedstocks
10.13.1.1            Biomethane
10.13.1.2            Production pathways
10.13.1.2.1        Landfill gas recovery
10.13.1.2.2        Anaerobic digestion
10.13.1.2.3        Thermal gasification
10.13.1.3            SWOT analysis
10.13.1.4            Global production
10.13.1.5            Prices
10.13.1.5.1        Raw Biogas
10.13.1.5.2        Upgraded Biomethane
10.13.1.6            Bio-LNG
10.13.1.6.1        Markets
10.13.1.6.1.1    Trucks
10.13.1.6.1.2    Marine
10.13.1.6.2        Production
10.13.1.6.3        Plants
10.13.1.7            bio-CNG (compressed natural gas derived from biogas)
10.13.1.8            Carbon capture from biogas
10.13.2 Biosyngas
10.13.2.1            Production
10.13.2.2            Prices
10.13.3 Biohydrogen
10.13.3.1            Description
10.13.3.2            SWOT analysis
10.13.3.3            Production of biohydrogen from biomass
10.13.3.3.1        Biological Conversion Routes
10.13.3.3.1.1    Bio-photochemical Reaction
10.13.3.3.1.2    Fermentation and Anaerobic Digestion
10.13.3.3.2        Thermochemical conversion routes
10.13.3.3.2.1    Biomass Gasification
10.13.3.3.2.2    Biomass Pyrolysis
10.13.3.3.2.3    Biomethane Reforming
10.13.3.4            Applications
10.13.3.5            Prices
10.13.4 Biochar in biogas production
10.13.5 Bio-DME
10.14    Chemical recycling for biofuels
10.14.1 Plastic pyrolysis
10.14.2 Used tires pyrolysis
10.14.2.1            Conversion to biofuel
10.14.3 Co-pyrolysis of biomass and plastic wastes
10.14.4 Gasification
10.14.4.1            Syngas conversion to methanol
10.14.4.2            Biomass gasification and syngas fermentation
10.14.4.3            Biomass gasification and syngas thermochemical conversion
10.14.5 Hydrothermal cracking
10.14.6 SWOT analysis
10.15    Electrofuels (E-fuels, power-to-gas/liquids/fuels)
10.15.1 Introduction
10.15.2 Benefits of e-fuels
10.15.3 Feedstocks
10.15.3.1            Hydrogen electrolysis
10.15.3.2            CO2 capture
10.15.4 SWOT analysis
10.15.5 Production
10.15.5.1            eFuel production facilities, current and planned
10.15.6 Electrolysers
10.15.6.1            Commercial alkaline electrolyser cells (AECs)
10.15.6.2            PEM electrolysers (PEMEC)
10.15.6.3            High-temperature solid oxide electrolyser cells (SOECs)
10.15.7 Prices
10.15.8 Market challenges
10.15.9 Companies
10.16    Algae-derived biofuels
10.16.1 Technology description
10.16.2 Conversion pathways
10.16.3 SWOT analysis
10.16.4 Production
10.16.5 Market challenges
10.16.6 Prices
10.16.7 Producers
10.17    Green Ammonia
10.17.1 Production
10.17.1.1            Decarbonisation of ammonia production
10.17.1.2            Green ammonia projects
10.17.2 Green ammonia synthesis methods
10.17.2.1            Haber-Bosch process
10.17.2.2            Biological nitrogen fixation
10.17.2.3            Electrochemical production
10.17.2.4            Chemical looping processes
10.17.3 SWOT analysis
10.17.4 Blue ammonia
10.17.4.1            Blue ammonia projects
10.17.5 Markets and applications
10.17.5.1            Chemical energy storage
10.17.5.1.1        Ammonia fuel cells
10.17.5.2            Marine fuel
10.17.6 Prices
10.17.7 Estimated market demand
10.17.8 Companies and projects
10.18    Biofuels from carbon capture
10.18.1 Overview
10.18.2 CO2 capture from point sources
10.18.3 Production routes
10.18.4 SWOT analysis
10.18.5 Direct air capture (DAC)
10.18.5.1            Description
10.18.5.2            Deployment
10.18.5.3            Point source carbon capture versus Direct Air Capture
10.18.5.4            Technologies
10.18.5.4.1        Solid sorbents
10.18.5.4.2        Liquid sorbents
10.18.5.4.3        Liquid solvents
10.18.5.4.4        Airflow equipment integration
10.18.5.4.5        Passive Direct Air Capture (PDAC)
10.18.5.4.6        Direct conversion
10.18.5.4.7        Co-product generation
10.18.5.4.8        Low Temperature DAC
10.18.5.4.9        Regeneration methods
10.18.5.5            Commercialization and plants
10.18.5.6            Metal-organic frameworks (MOFs) in DAC
10.18.5.7            DAC plants and projects-current and planned
10.18.5.8            Markets for DAC
10.18.5.9            Costs
10.18.5.10         Challenges
10.18.5.11         Players and production
10.18.6 Carbon utilization for biofuels
10.18.6.1            Production routes
10.18.6.1.1        Electrolyzers
10.18.6.1.2        Low-carbon hydrogen
10.18.6.2            Products & applications
10.18.6.2.1        Vehicles
10.18.6.2.2        Shipping
10.18.6.2.3        Aviation
10.18.6.2.4        Costs
10.18.6.2.5        Ethanol
10.18.6.2.6        Methanol
10.18.6.2.7        Sustainable Aviation Fuel
10.18.6.2.8        Methane
10.18.6.2.9        Algae based biofuels
10.18.6.2.10     CO2-fuels from solar
10.18.6.3            Challenges
10.18.6.4            SWOT analysis
10.18.6.5            Companies
10.19    Bio-oils (pyrolysis oils)
10.19.1 Description
10.19.1.1            Advantages of bio-oils
10.19.2 Production
10.19.2.1            Fast Pyrolysis
10.19.2.2            Costs of production
10.19.2.3            Upgrading
10.19.3 SWOT analysis
10.19.4 Applications
10.19.5 Bio-oil producers
10.19.6 Prices
10.20    Refuse Derived Fuels (RDF)
10.20.1 Overview
10.20.2 Production
10.20.2.1            Production process
10.20.2.2            Mechanical biological treatment
10.20.3 Markets
10.21    Company profiles   (214 company profiles)

11           SUSTAINABLE ELECTRONICS
11.1       Overview
11.1.1   Green electronics manufacturing
11.1.2   Drivers for sustainable electronics
11.1.3   Environmental Impacts of Electronics Manufacturing
11.1.3.1               E-Waste Generation
11.1.3.2               Carbon Emissions
11.1.3.3               Resource Utilization
11.1.3.4               Waste Minimization
11.1.3.5               Supply Chain Impacts
11.1.4   New opportunities from sustainable electronics
11.1.5   Regulations
11.1.5.1               Certifications
11.1.6   Powering sustainable electronics (Bio-based batteries)
11.1.7   Bioplastics in injection moulded electronics parts
11.2       Green electronics manufacturing
11.2.1   Conventional electronics manufacturing
11.2.2   Benefits of Green Electronics manufacturing
11.2.3   Challenges in adopting Green Electronics manufacturing
11.2.4   Approaches
11.2.4.1               Closed-Loop Manufacturing
11.2.4.2               Digital Manufacturing
11.2.4.2.1           Advanced robotics & automation
11.2.4.2.2           AI & machine learning analytics
11.2.4.2.3           Internet of Things (IoT)
11.2.4.2.4           Additive manufacturing
11.2.4.2.5           Virtual prototyping
11.2.4.2.6           Blockchain-enabled supply chain traceability
11.2.4.3               Renewable Energy Usage
11.2.4.4               Energy Efficiency
11.2.4.5               Materials Efficiency
11.2.4.6               Sustainable Chemistry
11.2.4.7               Recycled Materials
11.2.4.7.1           Advanced chemical recycling
11.2.4.8               Bio-Based Materials
11.2.5   Greening the Supply Chain
11.2.5.1               Key focus areas
11.2.5.2               Sustainability activities from major electronics brands
11.2.5.3               Key challenges
11.2.5.4               Use of digital technologies
11.2.6   Sustainable Printed Circuit Board (PCB) manufacturing
11.2.6.1               Conventional PCB manufacturing
11.2.6.2               Trends in PCBs
11.2.6.2.1           High-Speed PCBs
11.2.6.2.2           Flexible PCBs
11.2.6.2.3           3D Printed PCBs
11.2.6.2.4           Sustainable PCBs
11.2.6.3               Reconciling sustainability with performance
11.2.6.4               Sustainable supply chains
11.2.6.5               Sustainability in PCB manufacturing
11.2.6.5.1           Sustainable cleaning of PCBs
11.2.6.6               Design of PCBs for sustainability
11.2.6.6.1           Rigid
11.2.6.6.2           Flexible
11.2.6.6.3           Additive manufacturing
11.2.6.6.4           In-mold elctronics (IME)
11.2.6.7               Materials
11.2.6.7.1           Metal cores
11.2.6.7.2           Recycled laminates
11.2.6.7.3           Conductive inks
11.2.6.7.4           Green and lead-free solder
11.2.6.7.5           Biodegradable substrates
11.2.6.7.5.1       Bacterial Cellulose
11.2.6.7.5.2       Mycelium
11.2.6.7.5.3       Lignin
11.2.6.7.5.4       Cellulose Nanofibers
11.2.6.7.5.5       Soy Protein
11.2.6.7.5.6       Algae
11.2.6.7.5.7       PHAs
11.2.6.7.6           Biobased inks
11.2.6.8               Substrates
11.2.6.8.1           Halogen-free FR4
11.2.6.8.1.1       FR4 limitations
11.2.6.8.1.2       FR4 alternatives
11.2.6.8.1.3       Bio-Polyimide
11.2.6.8.2           Metal-core PCBs
11.2.6.8.3           Biobased PCBs
11.2.6.8.3.1       Flexible (bio) polyimide PCBs
11.2.6.8.3.2       Recent commercial activity
11.2.6.8.4           Paper-based PCBs
11.2.6.8.5           PCBs without solder mask
11.2.6.8.6           Thinner dielectrics
11.2.6.8.7           Recycled plastic substrates
11.2.6.8.8           Flexible substrates
11.2.6.9               Sustainable patterning and metallization in electronics manufacturing
11.2.6.9.1           Introduction
11.2.6.9.2           Issues with sustainability
11.2.6.9.3           Regeneration and reuse of etching chemicals
11.2.6.9.4           Transition from Wet to Dry phase patterning
11.2.6.9.5           Print-and-plate
11.2.6.9.6           Approaches
11.2.6.9.6.1       Direct Printed Electronics
11.2.6.9.6.2       Photonic Sintering
11.2.6.9.6.3       Biometallization
11.2.6.9.6.4       Plating Resist Alternatives
11.2.6.9.6.5       Laser-Induced Forward Transfer
11.2.6.9.6.6       Electrohydrodynamic Printing
11.2.6.9.6.7       Electrically conductive adhesives (ECAs
11.2.6.9.6.8       Green electroless plating
11.2.6.9.6.9       Smart Masking
11.2.6.9.6.10    Component Integration
11.2.6.9.6.11    Bio-inspired material deposition
11.2.6.9.6.12    Multi-material jetting
11.2.6.9.6.13    Vacuumless deposition
11.2.6.9.6.14    Upcycling waste streams
11.2.6.10            Sustainable attachment and integration of components
11.2.6.10.1        Conventional component attachment materials
11.2.6.10.2        Materials
11.2.6.10.2.1    Conductive adhesives
11.2.6.10.2.2    Biodegradable adhesives
11.2.6.10.2.3    Magnets
11.2.6.10.2.4    Bio-based solders
11.2.6.10.2.5    Bio-derived solders
11.2.6.10.2.6    Recycled plastics
11.2.6.10.2.7    Nano adhesives
11.2.6.10.2.8    Shape memory polymers
11.2.6.10.2.9    Photo-reversible polymers
11.2.6.10.2.10 Conductive biopolymers
11.2.6.10.3        Processes
11.2.6.10.3.1    Traditional thermal processing methods
11.2.6.10.3.2    Low temperature solder
11.2.6.10.3.3    Reflow soldering
11.2.6.10.3.4    Induction soldering
11.2.6.10.3.5    UV curing
11.2.6.10.3.6    Near-infrared (NIR) radiation curing
11.2.6.10.3.7    Photonic sintering/curing
11.2.6.10.3.8    Hybrid integration
11.2.7   Sustainable integrated circuits
11.2.7.1               IC manufacturing
11.2.7.2               Sustainable IC manufacturing
11.2.7.3               Wafer production
11.2.7.3.1           Silicon
11.2.7.3.2           Gallium nitride ICs
11.2.7.3.3           Flexible ICs
11.2.7.3.4           Fully printed organic ICs
11.2.7.4               Oxidation methods
11.2.7.4.1           Sustainable oxidation
11.2.7.4.2           Metal oxides
11.2.7.4.3           Recycling
11.2.7.4.4           Thin gate oxide layers
11.2.7.5               Patterning and doping
11.2.7.5.1           Processes
11.2.7.5.1.1       Wet etching
11.2.7.5.1.2       Dry plasma etching
11.2.7.5.1.3       Lift-off patterning
11.2.7.5.1.4       Surface doping
11.2.7.6               Metallization
11.2.7.6.1           Evaporation
11.2.7.6.2           Plating
11.2.7.6.3           Printing
11.2.7.6.3.1       Printed metal gates for organic thin film transistors
11.2.7.6.4           Physical vapour deposition (PVD)
11.2.8   End of life
11.2.8.1               Hazardous waste
11.2.8.2               Emissions
11.2.8.3               Water Usage
11.2.8.4               Recycling
11.2.8.4.1           Mechanical recycling
11.2.8.4.2           Electro-Mechanical Separation
11.2.8.4.3           Chemical Recycling
11.2.8.5               Electrochemical Processes
11.2.8.5.1           Thermal Recycling
11.2.8.6               Green Certification
11.3       Global market
11.3.1   Global PCB manufacturing industry
11.3.1.1               PCB revenues
11.3.2   Sustainable PCBs
11.3.3   Sustainable ICs
11.4       Company profiles          2429 (45 company profiles)


12           BIOBASED ADHESIVES AND SEALANTS
12.1       Overview
12.1.1   Biobased Epoxy Adhesives
12.1.2   Biobased Polyurethane Adhesives
12.1.3   Other Biobased Adhesives and Sealants
12.2       Types
12.2.1   Cellulose-Based
12.2.2   Starch-Based
12.2.3   Lignin-Based
12.2.4   Vegetable Oils
12.2.5   Protein-Based
12.2.6   Tannin-Based
12.3       Global revenues
12.3.1   By types
12.3.2   By market
12.4       Companies profiles   (22 company profiles)

13           REFERENCES
List of Tables
Table 1. Plant-based feedstocks and biochemicals produced.
Table 2. Waste-based feedstocks and biochemicals produced.
Table 3. Microbial and mineral-based feedstocks and biochemicals produced.
Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.
Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.
Table 6. Applications of  lysine as a feedstock for biochemicals.
Table 7. HDMA sources that can be used as feedstocks for producing biochemicals.
Table 8. Applications of bio-based HDMA.
Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).
Table 10. Applications of DN5.
Table 11. Biobased feedstocks for isosorbide.
Table 12. Applications of bio-based isosorbide.
Table 13. Lactide applications.
Table 14. Biobased feedstock sources for itaconic acid.
Table 15. Applications of bio-based itaconic acid.
Table 16. Biobased feedstock sources for 3-HP.
Table 17. Applications of 3-HP.
Table 18. Applications of bio-based acrylic acid.
Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO).
Table 20. Biobased feedstock sources for Succinic acid.
Table 21. Applications of succinic acid.
Table 22. Applications of bio-based 1,4-Butanediol (BDO).
Table 23. Applications of bio-based Tetrahydrofuran (THF).
Table 24. Applications of bio-based adipic acid.
Table 25. Applications of bio-based caprolactam.
Table 26. Biobased feedstock sources for isobutanol.
Table 27. Applications of bio-based isobutanol.
Table 28. Biobased feedstock sources for p-Xylene.
Table 29. Applications of bio-based p-Xylene.
Table 30. Applications of bio-based Terephthalic acid (TPA).
Table 31. Biobased feedstock sources for 1,3 Proppanediol.
Table 32. Applications of bio-based 1,3 Proppanediol.
Table 33. Biobased feedstock sources for MEG.
Table 34. Applications of bio-based MEG.
Table 35. Biobased MEG producers capacities.
Table 36. Biobased feedstock sources for ethanol.
Table 37. Applications of bio-based ethanol.
Table 38. Applications of bio-based ethylene.
Table 39. Applications of bio-based propylene.
Table 40. Applications of bio-based vinyl chloride.
Table 41. Applications of bio-based Methly methacrylate.
Table 42. Applications of bio-based aniline.
Table 43. Applications of biobased fructose.
Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).
Table 45. Applications of 5-(Chloromethyl)furfural (CMF).
Table 46. Applications of Levulinic acid.
Table 47. Markets and applications for bio-based FDME.
Table 48. Applications of FDCA.
Table 49. Markets and applications for bio-based levoglucosenone.
Table 50. Biochemicals derived from hemicellulose
Table 51. Markets and applications for bio-based hemicellulose
Table 52. Markets and applications for bio-based furfuryl alcohol.
Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 54. Lignin aromatic compound products.
Table 55. Prices of benzene, toluene, xylene and their derivatives.
Table 56. Lignin products in polymeric materials.
Table 57. Application of lignin in plastics and composites.
Table 58. Markets and applications for bio-based glycerol.
Table 59. Markets and applications for Bio-based MPG.
Table 60. Markets and applications: Bio-based ECH.
Table 61. Mineral source products and applications.
Table 62. Type of biodegradation.
Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics.
Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.
Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.
Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.
Table 67. Lactic acid producers and production capacities.
Table 68. PLA producers and production capacities.
Table 69. Planned PLA capacity expansions in China.
Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.
Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.
Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.
Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.
Table 75. PEF vs. PET.
Table 76. FDCA and PEF producers.
Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.
Table 78. Leading Bio-PA producers production capacities.
Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.
Table 80. Leading PBAT producers, production capacities and brands.
Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.
Table 82. Leading PBS producers and production capacities.
Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.
Table 84. Leading Bio-PE producers.
Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.
Table 86. Leading Bio-PP producers and capacities.
Table 87.Types of PHAs and properties.
Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.
Table 89. Polyhydroxyalkanoate (PHA) extraction methods.
Table 90. Polyhydroxyalkanoates (PHA) market analysis.
Table 91. Commercially available PHAs.
Table 92. Markets and applications for PHAs.
Table 93. Applications, advantages and disadvantages of PHAs in packaging.
Table 94. Polyhydroxyalkanoates (PHA) producers.
Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.
Table 96. Leading MFC producers and capacities.
Table 97. Synthesis methods for cellulose nanocrystals (CNC).
Table 98. CNC sources, size and yield.
Table 99. CNC properties.
Table 100. Mechanical properties of CNC and other reinforcement materials.
Table 101. Applications of nanocrystalline cellulose (NCC).
Table 102. Cellulose nanocrystals analysis.
Table 103: Cellulose nanocrystal production capacities and production process, by producer.
Table 104. Applications of cellulose nanofibers (CNF).
Table 105. Cellulose nanofibers market analysis.
Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.
Table 107. Applications of bacterial nanocellulose (BNC).
Table 108. Types of protein based-bioplastics, applications and companies.
Table 109. Types of algal and fungal based-bioplastics, applications and companies.
Table 110. Overview of alginate-description, properties, application and market size.
Table 111. Companies developing algal-based bioplastics.
Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.
Table 113. Companies developing mycelium-based bioplastics.
Table 114. Overview of chitosan-description, properties, drawbacks and applications.
Table 115. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes.
Table 116. Biobased and sustainable plastics producers in North America.
Table 117. Biobased and sustainable plastics producers in Europe.
Table 118. Biobased and sustainable plastics producers in Asia-Pacific.
Table 119. Biobased and sustainable plastics producers in Latin America.
Table 120. Processes for bioplastics in packaging.
Table 121. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.
Table 122. Typical applications for bioplastics in flexible packaging.
Table 123. Typical applications for bioplastics in rigid packaging.
Table 124. Technical lignin types and applications.
Table 125. Classification of technical lignins.
Table 126. Lignin content of selected biomass.
Table 127. Properties of lignins and their applications.
Table 128. Example markets and applications for lignin.
Table 129. Processes for lignin production.
Table 130. Biorefinery feedstocks.
Table 131. Comparison of pulping and biorefinery lignins.
Table 132. Commercial and pre-commercial biorefinery lignin production facilities and  processes
Table 133. Market drivers and trends for lignin.
Table 134. Production capacities of technical lignin producers.
Table 135. Production capacities of biorefinery lignin producers.
Table 136. Estimated consumption of lignin, 2019-2035 (000 MT).
Table 137. Prices of benzene, toluene, xylene and their derivatives.
Table 138. Application of lignin in plastics and polymers.
Table 139. Lactips plastic pellets.
Table 140. Oji Holdings CNF products.
Table 141. Types of natural fibers.
Table 142. Markets and applications for natural fibers.
Table 143. Commercially available natural fiber products.
Table 144. Market drivers for natural fibers.
Table 145. Typical properties of natural fibers.
Table 146. Overview of kapok fibers-description, properties, drawbacks and applications.
Table 147. Overview of luffa fibers-description, properties, drawbacks and applications.
Table 148. Overview of jute fibers-description, properties, drawbacks and applications.
Table 149. Overview of hemp fibers-description, properties, drawbacks and applications.
Table 150. Overview of flax fibers-description, properties, drawbacks and applications.
Table 151. Overview of ramie fibers-description, properties, drawbacks and applications.
Table 152. Overview of kenaf fibers-description, properties, drawbacks and applications.
Table 153. Overview of sisal fibers-description, properties, drawbacks and applications.
Table 154. Overview of abaca fibers-description, properties, drawbacks and applications.
Table 155. Overview of coir fibers-description, properties, drawbacks and applications.
Table 156. Overview of banana fibers-description, properties, drawbacks and applications.
Table 157. Overview of pineapple fibers-description, properties, drawbacks and applications.
Table 158. Overview of rice fibers-description, properties, drawbacks and applications.
Table 159. Overview of corn fibers-description, properties, drawbacks and applications.
Table 160. Overview of switch grass fibers-description, properties and applications.
Table 161. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.
Table 162. Overview of bamboo fibers-description, properties, drawbacks and applications.
Table 163. Overview of mycelium fibers-description, properties, drawbacks and applications.
Table 164. Overview of chitosan fibers-description, properties, drawbacks and applications.
Table 165. Overview of alginate-description, properties, application and market size.
Table 166. Overview of silk fibers-description, properties, application and market size.
Table 167. Next-gen silk producers.
Table 168. Companies developing cellulose fibers for application in plastic composites.
Table 169. Microfibrillated cellulose (MFC) market analysis.
Table 170. Leading MFC producers and capacities.
Table 171. Cellulose nanocrystals market overview.
Table 172. Cellulose nanocrystal production capacities and production process, by producer.
Table 173. Cellulose nanofibers market analysis.
Table 174. CNF production capacities and production process, by producer, in metric tons.
Table 175. Processing and treatment methods for natural fibers used in plastic composites.
Table 176. Application, manufacturing method, and matrix materials of natural fibers.
Table 177. Properties of natural fiber-bio-based polymer compounds.
Table 178. Typical properties of short natural fiber-thermoplastic composites.
Table 179. Properties of non-woven natural fiber mat composites.
Table 180. Applications of natural fibers in plastics.
Table 181. Applications of natural fibers in the automotive industry.
Table 182. Natural fiber-reinforced polymer composite in the automotive market.
Table 183. Applications of natural fibers in packaging.
Table 184. Applications of natural fibers in construction.
Table 185. Applications of natural fibers in the appliances market.
Table 186. Applications of natural fibers in the consumer electronics market.
Table 187. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD).
Table 188. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).
Table 189. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).
Table 190. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).
Table 191. Granbio Nanocellulose Processes.
Table 192. Oji Holdings CNF products.
Table 193. Global revenues in sustainable construction materials, by type 2018-2035 (billions USD).
Table 194. Types of self-healing concrete.
Table 195. Applications of cellulose nanofibers in building and construction.
Table 196. General properties and value of aerogels.
Table 197. Key properties of silica aerogels.
Table 198. Chemical precursors used to synthesize silica aerogels.
Table 199. Commercially available aerogel-enhanced blankets.
Table 200. Main manufacturers of silica aerogels and product offerings.
Table 201. Typical structural properties of metal oxide aerogels.
Table 202. Polymer aerogels companies.
Table 203. Types of biobased aerogels.
Table 204. Carbon aerogel companies.
Table 205. Conversion pathway for CO2-derived building materials.
Table 206. Carbon capture technologies and projects in the cement sector
Table 207. Carbonation of recycled concrete companies.
Table 208. Current and projected costs for some key CO2 utilization applications in the construction industry.
Table 209. Market challenges for CO2 utilization in construction materials.
Table 210. Global Decarbonization Targets and Policies related to Green Steel.
Table 211. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).
Table 212. Hydrogen-based steelmaking technologies.
Table 213. Comparison of green steel production technologies.
Table 214. Advantages and disadvantages of each potential hydrogen carrier.
Table 215. CCUS in green steel production.
Table 216. Biochar in steel and metal.
Table 217. Hydrogen blast furnace schematic.
Table 218. Applications of microwave processing in green steelmaking.
Table 219. Applications of additive manufacturing (AM) in steelmaking.
Table 220.  Technology readiness level (TRL) for key green steel production technologies.
Table 221. Properties of Green steels.
Table 222. Applications of green steel in the construction industry.
Table 223. Market trends in bio-based and sustainable packaging
Table 224. Drivers for recent growth in the bioplastics and biopolymers markets.
Table 225. Challenges for bio-based and sustainable packaging.
Table 226. Types of bio-based plastics and fossil-fuel-based plastics
Table 227. Comparison of synthetic fossil-based and bio-based polymers.
Table 228. Processes for bioplastics in packaging.
Table 229. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.
Table 230. Lactic acid producers and production capacities.
Table 231. PLA producers and production capacities.
Table 232. Planned PLA capacity expansions in China.
Table 233. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.
Table 234. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 235. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.
Table 236. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.
Table 237. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.
Table 238. PEF vs. PET.
Table 239. FDCA and PEF producers.
Table 240. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.
Table 241. Leading Bio-PA producers production capacities.
Table 242. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.
Table 243. Leading PBAT producers, production capacities and brands.
Table 244. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.
Table 245. Leading PBS producers and production capacities.
Table 246. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.
Table 247. PEF vs. PET.
Table 248. FDCA and PEF producers.
Table 249. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.
Table 250. Leading Bio-PE producers.
Table 251. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.
Table 252. Leading Bio-PP producers and capacities.
Table 253.Types of PHAs and properties.
Table 254. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.
Table 255. Polyhydroxyalkanoate (PHA) extraction methods.
Table 256. Polyhydroxyalkanoates (PHA) market analysis.
Table 257. Commercially available PHAs.
Table 258. Markets and applications for PHAs.
Table 259. Applications, advantages and disadvantages of PHAs in packaging.
Table 260. Length and diameter of nanocellulose and MFC.
Table 261. Major polymers found in the extracellular covering of different algae.
Table 262. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.
Table 263. Applications of nanocrystalline cellulose (NCC).
Table 264. Market overview for cellulose nanofibers in packaging.
Table 265. Types of protein based-bioplastics, applications and companies.
Table 266. Overview of alginate-description, properties, application and market size.
Table 267. Companies developing algal-based bioplastics.
Table 268. Overview of mycelium fibers-description, properties, drawbacks and applications.
Table 269. Overview of chitosan-description, properties, drawbacks and applications.
Table 270. Bio-based naphtha markets and applications.
Table 271. Bio-naphtha market value chain.
Table 272. Pros and cons of different type of food packaging materials.
Table 273. Active Biodegradable Films films and their food applications.
Table 274. Intelligent Biodegradable Films.
Table 275. Edible films and coatings market summary.
Table 276. Summary of barrier films and coatings for packaging.
Table 277. Types of polyols.
Table 278. Polyol producers.
Table 279. Bio-based polyurethane coating products.
Table 280. Bio-based acrylate resin products.
Table 281. Polylactic acid (PLA) market analysis.
Table 282. Commercially available PHAs.
Table 283. Market overview for cellulose nanofibers in paints and coatings.
Table 284. Companies developing cellulose nanofibers products in paints and coatings.
Table 285. Types of protein based-biomaterials, applications and companies.
Table 286. CO2 utilization and removal pathways.
Table 287. CO2 utilization products developed by chemical and plastic producers.
Table 288. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.
Table 289. Typical applications for bioplastics in flexible packaging.
Table 290. Typical applications for bioplastics in rigid packaging.
Table 291. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate.
Table 292. Lactips plastic pellets.
Table 293. Oji Holdings CNF products.
Table 294. Properties and applications of the main natural fibres
Table 295. Properties and applications of the main man-made cellulosic fibres
Table 296. Types of sustainable alternative leathers.
Table 297. Properties of bio-based leathers.
Table 298. Comparison with conventional leathers.
Table 299. Price of commercially available sustainable alternative leather products.
Table 300. Comparative analysis of sustainable alternative leathers.
Table 301. Key processing steps involved in transforming plant fibers into leather materials.
Table 302. Current and emerging plant-based leather products.
Table 303. Companies developing plant-based leather products.
Table 304. Overview of mycelium-description, properties, drawbacks and applications.
Table 305. Companies developing mycelium-based leather products.
Table 306. Types of microbial-derived leather alternative.
Table 307. Companies developing microbial leather products.
Table 308. Companies developing plant-based leather products.
Table 309. Types of protein-based leather alternatives.
Table 310. Companies developing protein based leather.
Table 311. Companies developing sustainable coatings and dyes for leather -
Table 312. Markets and applications for bio-based textiles and leather.
Table 313. Applications of biobased leather in furniture and upholstery.
Table 314. Global revenues for bio-based textiles by type, 2018-2035 (millions USD).
Table 315. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).
Table 316. Market drivers and trends in bio-based and sustainable coatings.
Table 317. Example envinronmentally friendly coatings, advantages and disadvantages.
Table 318. Plant Waxes.
Table 319. Types of alkyd resins and properties.
Table 320. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers.
Table 321. Bio-based alkyd coating products.
Table 322. Types of polyols.
Table 323. Polyol producers.
Table 324. Bio-based polyurethane coating products.
Table 325. Market summary for bio-based epoxy resins.
Table 326. Bio-based polyurethane coating products.
Table 327. Bio-based acrylate resin products.
Table 328. Polylactic acid (PLA) market analysis.
Table 329. PLA producers and production capacities.
Table 330. Polyhydroxyalkanoates (PHA) market analysis.
Table 331.Types of PHAs and properties.
Table 332. Polyhydroxyalkanoates (PHA) producers.
Table 333. Commercially available PHAs.
Table 334. Properties of micro/nanocellulose, by type.
Table 335: Types of nanocellulose.
Table 336. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons.
Table 337. Commercially available Microfibrillated Cellulose products.
Table 338. Market overview for cellulose nanofibers in paints and coatings.
Table 339. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs.
Table 340. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization.
Table 341. CNC properties.
Table 342: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.
Table 343. Applications of bacterial nanocellulose (BNC).
Table 344. Edible films and coatings market summary.
Table 345. Types of protein based-biomaterials, applications and companies.
Table 346. Overview of algal coatings-description, properties, application and market size.
Table 347. Companies developing algal-based plastics.
Table 348. Global market revenues for bio-based coatings, by types,  2018-2035 (billions USD).
Table 349. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.
Table 350. Lactips plastic pellets.
Table 351. Oji Holdings CNF products.
Table 352. Market drivers for biofuels.
Table 353. Market challenges for biofuels.
Table 354. Liquid biofuels market 2020-2035, by type and production.
Table 355. Comparison of biofuels.
Table 356. Comparison of biofuel costs (USD/liter) 2023, by type.
Table 357. Categories and examples of solid biofuel.
Table 358. Comparison of biofuels and e-fuels to fossil and electricity.
Table 359. Classification of biomass feedstock.
Table 360. Biorefinery feedstocks.
Table 361. Feedstock conversion pathways.
Table 362. First-Generation Feedstocks.
Table 363.  Lignocellulosic ethanol plants and capacities.
Table 364. Comparison of pulping and biorefinery lignins.
Table 365. Commercial and pre-commercial biorefinery lignin production facilities and  processes
Table 366. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.
Table 367. Properties of microalgae and macroalgae.
Table 368. Yield of algae and other biodiesel crops.
Table 369. Advantages and disadvantages of biofuels, by generation.
Table 370. Biodiesel by generation.
Table 371. Biodiesel production techniques.
Table 372. Summary of pyrolysis technique under different operating conditions.
Table 373. Biomass materials and their bio-oil yield.
Table 374. Biofuel production cost from the biomass pyrolysis process.
Table 375. Properties of vegetable oils in comparison to diesel.
Table 376. Main producers of HVO and capacities.
Table 377. Example commercial Development of BtL processes.
Table 378. Pilot or demo projects for biomass to liquid (BtL) processes.
Table 379. Global biodiesel consumption, 2010-2035 (M litres/year).
Table 380. Global renewable diesel consumption, 2010-2035 (M litres/year).
Table 381. Renewable diesel price ranges.
Table 382. Advantages and disadvantages of Bio-aviation fuel.
Table 383. Production pathways for Bio-aviation fuel.
Table 384. Current and announced Bio-aviation fuel facilities and capacities.
Table 385. Global bio-jet fuel consumption 2019-2035 (Million litres/year).
Table 386. Bio-based naphtha markets and applications.
Table 387. Bio-naphtha market value chain.
Table 388. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.
Table 389. Bio-based Naphtha production capacities, by producer.
Table 390. Comparison of biogas, biomethane and natural gas.
Table 391. Processes in bioethanol production.
Table 392. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.
Table 393. Ethanol consumption 2010-2035 (million litres).
Table 394. Biogas feedstocks.
Table 395. Existing and planned bio-LNG production plants.
Table 396. Methods for capturing carbon dioxide from biogas.
Table 397. Comparison of different Bio-H2 production pathways.
Table 398. Markets and applications for biohydrogen.
Table 399. Summary of gasification technologies.
Table 400. Overview of hydrothermal cracking for advanced chemical recycling.
Table 401. Applications of e-fuels, by type.
Table 402. Overview of e-fuels.
Table 403. Benefits of e-fuels.
Table 404. eFuel production facilities, current and planned.
Table 405. Main characteristics of different electrolyzer technologies.
Table 406. Market challenges for e-fuels.
Table 407. E-fuels companies.
Table 408. Algae-derived biofuel producers.
Table 409. Green ammonia projects (current and planned).
Table 410. Blue ammonia projects.
Table 411. Ammonia fuel cell technologies.
Table 412. Market overview of green ammonia in marine fuel.
Table 413. Summary of marine alternative fuels.
Table 414. Estimated costs for different types of ammonia.
Table 415. Main players in green ammonia.
Table 416. Market overview for CO2 derived fuels.
Table 417. Point source examples.
Table 418. Advantages and disadvantages of DAC.
Table 419. Companies developing airflow equipment integration with DAC.
Table 420. Companies developing Passive Direct Air Capture (PDAC) technologies.
Table 421. Companies developing regeneration methods for DAC technologies.
Table 422. DAC companies and technologies.
Table 423. DAC technology developers and production.
Table 424. DAC projects in development.
Table 425. Markets for DAC.
Table 426. Costs summary for DAC.
Table 427. Cost estimates of DAC.
Table 428. Challenges for DAC technology.
Table 429. DAC companies and technologies.
Table 430. Market overview for CO2 derived fuels.
Table 431. Main production routes and processes for manufacturing fuels from captured carbon dioxide.
Table 432. CO2-derived fuels projects.
Table 433. Thermochemical methods to produce methanol from CO2.
Table 434. pilot plants for CO2-to-methanol conversion.
Table 435. Microalgae products and prices.
Table 436. Main Solar-Driven CO2 Conversion Approaches.
Table 437. Market challenges for CO2 derived fuels.
Table 438. Companies in CO2-derived fuel products.
Table 439. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.
Table 440. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.
Table 441. Main techniques used to upgrade bio-oil into higher-quality fuels.
Table 442. Markets and applications for bio-oil.
Table 443. Bio-oil producers.
Table 444. Key resource recovery technologies
Table 445. Markets and end uses for refuse-derived fuels (RDF).
Table 446. Granbio Nanocellulose Processes.
Table 447. Key factors driving adoption of green electronics.
Table 448. Key circular economy strategies for electronics.
Table 449. Regulations pertaining to green electronics.
Table 450. Companies developing bio-based batteries for application in sustainable electronics.
Table 451. Benefits of Green Electronics Manufacturing
Table 452. Challenges in adopting Green Electronics manufacturing.
Table 453. Major chipmakers' renewable energy road maps.
Table 454. Energy efficiency in sustainable electronics manufacturing.
Table 455. Composition of plastic waste streams.
Table 456. Comparison of mechanical and advanced chemical recycling.
Table 457. Example chemically recycled plastic products.
Table 458. Bio-based and non-toxic materials in sustainable electronics.
Table 459. Key focus areas for enabling greener and ethically responsible electronics supply chains.
Table 460. Sustainability programs and disclosure from major electronics brands.
Table 461. PCB manufacturing process.
Table 462. Challenges in PCB manufacturing.
Table 463. 3D PCB manufacturing.
Table 464.  Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors.
Table 465. Sustainable PCB supply chain.
Table 466. Key areas where the PCB industry can improve sustainability.
Table 467. Improving sustainability of PCB design.
Table 468. PCB design options for sustainability.
Table 469.  Sustainability benefits and challenges associated with 3D printing.
Table 470. Conductive ink producers.
Table 471.  Green and lead-free solder companies.
Table 472. Biodegradable substrates for PCBs.
Table 473. Overview of mycelium fibers-description, properties, drawbacks and applications.
Table 474. Application of lignin in composites.
Table 475. Properties of lignins and their applications.
Table 476. Properties of flexible electronics-cellulose nanofiber film (nanopaper).
Table 477. Companies developing cellulose nanofibers for electronics.
Table 478. Commercially available PHAs.
Table 479. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).
Table 480. Halogen-free FR4 companies.
Table 481. Properties of biobased PCBs.
Table 482. Applications of flexible (bio) polyimide PCBs.
Table 483. Main patterning and metallization steps in PCB fabrication and sustainable options.
Table 484. Sustainability issues with conventional metallization processes.
Table 485. Benefits of print-and-plate.
Table 486. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.
Table 487. Applications for laser induced forward transfer
Table 488. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.
Table 489. Approaches for in-situ oxidation prevention.
Table 490. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing.
Table 491. Advantages of green electroless plating.
Table 492. Comparison of component attachment materials.
Table 493. Comparison between sustainable and conventional component attachment materials for printed circuit boards
Table 494. Comparison between the SMAs and SMPs.
Table 495. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.
Table 496. Comparison of curing and reflow processes used for attaching components in electronics assembly.
Table 497. Low temperature solder alloys.
Table 498. Thermally sensitive substrate materials.
Table 499. Limitations of existing IC production.
Table 500. Strategies for improving sustainability in integrated circuit (IC) manufacturing.
Table 501. Comparison of oxidation methods and level of sustainability.
Table 502. Stage of commercialization for oxides.
Table 503. Alternative doping techniques.
Table 504.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers.
Table 505. Chemical recycling methods for handling electronic waste.
Table 506.  Electrochemical processes for recycling metals from electronic waste
Table 507. Thermal recycling processes for electronic waste.
Table 508. Global PCB revenues 2018-2035 (billions USD), by substrate types.
Table 509. Global sustainable PCB revenues 2018-2035, by type (millions USD).
Table 510. Global sustainable ICs revenues 2018-2035, by type (millions USD).
Table 511. Oji Holdings CNF products.
Table 512. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).
Table 513. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).

List of Figures
Figure 1. Schematic of biorefinery processes.
Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes).
Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes).
Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes).
Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes.
Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes).
Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes).
Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes).
Figure 9. Global lactide production, 2018-2035 (metric tonnes).
Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes).
Figure 11. Global production of 3-HP,  2018-2035 (metric tonnes).
Figure 12. Global production of bio-based acrylic acid,  2018-2035 (metric tonnes).
Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes).
Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes).
Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes).
Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes).
Figure 17. Overview of Toray process.
Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes).
Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes).
Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes).
Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes).
Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes).
Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes).
Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes).
Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes).
Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes).
Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes).
Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes).
Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes).
Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes).
Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes).
Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes).
Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes).
Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes).
Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes).
Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes:
Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes).
Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes).
Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes).
Figure 40. Schematic of WISA plywood home.
Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes).
Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes).
Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes).
Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes).
Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes).
Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes).
Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes).
Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes).
Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes).
Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes).
Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes).
Figure 57. Global microalgae production, 2018-2035 (million metric tonnes).
Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes).
Figure 59. Global production of biogas, 2018-2035 (billion m3).
Figure 60. Global production of syngas, 2018-2035 (billion m3).
Figure 61. formicobio™ technology.
Figure 62. Domsjö process.
Figure 63.  TMP-Bio Process.
Figure 64. Lignin gel.
Figure 65. BioFlex process.
Figure 66. LX Process.
Figure 67. METNIN™ Lignin refining technology.
Figure 68. Enfinity cellulosic ethanol technology process.
Figure 69.  Precision Photosynthesis™ technology.
Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 71. UPM biorefinery process.
Figure 72. The Proesa® Process.
Figure 73. Goldilocks process and applications.
Figure 74.  Coca-Cola PlantBottle®.
Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.
Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes).
Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes).
Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.
Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).
Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes).
Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).
Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes).
Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).
Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes).
Figure 86. PHA family.
Figure 87. PHA production capacities 2019-2035 (1,000 tonnes).
Figure 88. TEM image of cellulose nanocrystals.
Figure 89. CNC preparation.
Figure 90. Extracting CNC from trees.
Figure 91. CNC slurry.
Figure 92. CNF gel.
Figure 93. Bacterial nanocellulose shapes
Figure 94. BLOOM masterbatch from Algix.
Figure 95. Typical structure of mycelium-based foam.
Figure 96. Commercial mycelium composite construction materials.
Figure 97. Global production capacities for bioplastics by regionn 2019-2035, 1,000 tonnes.
Figure 98. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.
Figure 99. PHA bioplastics products.
Figure 100. The global market for biobased and biodegradable plastics for flexible packaging 2019-2033 (‘000 tonnes).
Figure 101. Production volumes for bioplastics for rigid packaging, 2019-2033 (‘000 tonnes).
Figure 102. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes.
Figure 103. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes.
Figure 104. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes.
Figure 105. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes.
Figure 106. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes.
Figure 107. Biodegradable mulch films.
Figure 108. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes.
Figure 109. High purity lignin.
Figure 110. Lignocellulose architecture.
Figure 111. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.
Figure 112. The lignocellulose biorefinery.
Figure 113. LignoBoost process.
Figure 114. LignoForce system for lignin recovery from black liquor.
Figure 115. Sequential liquid-lignin recovery and purification (SLPR) system.
Figure 116. A-Recovery+ chemical recovery concept.
Figure 117.  Schematic of a biorefinery for production of carriers and chemicals.
Figure 118. Organosolv lignin.
Figure 119. Hydrolytic lignin powder.
Figure 120. Estimated consumption of lignin, 2019-2035 (000 MT).
Figure 121. Pluumo.
Figure 122. ANDRITZ Lignin Recovery process.
Figure 123. Anpoly cellulose nanofiber hydrogel.
Figure 124. MEDICELLU™.
Figure 125. Asahi Kasei CNF fabric sheet.
Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 127. CNF nonwoven fabric.
Figure 128. Roof frame made of natural fiber.
Figure 129. Beyond Leather Materials product.
Figure 130. BIOLO e-commerce mailer bag made from PHA.
Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.
Figure 132. Fiber-based screw cap.
Figure 133. formicobio™ technology.
Figure 134. nanoforest-S.
Figure 135. nanoforest-PDP.
Figure 136. nanoforest-MB.
Figure 137. sunliquid® production process.
Figure 138. CuanSave film.
Figure 139. Celish.
Figure 140. Trunk lid incorporating CNF.
Figure 141. ELLEX products.
Figure 142. CNF-reinforced PP compounds.
Figure 143. Kirekira! toilet wipes.
Figure 144. Color CNF.
Figure 145. Rheocrysta spray.
Figure 146. DKS CNF products.
Figure 147. Domsjö process.
Figure 148. Mushroom leather.
Figure 149. CNF based on citrus peel.
Figure 150. Citrus cellulose nanofiber.
Figure 151. Filler Bank CNC products.
Figure 152. Fibers on kapok tree and after processing.
Figure 153.  TMP-Bio Process.
Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.
Figure 155. Water-repellent cellulose.
Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
Figure 157. PHA production process.
Figure 158. CNF products from Furukawa Electric.
Figure 159. AVAPTM process.
Figure 160. GreenPower+™ process.
Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).
Figure 163. CNF gel.
Figure 164. Block nanocellulose material.
Figure 165. CNF products developed by Hokuetsu.
Figure 166. Marine leather products.
Figure 167. Inner Mettle Milk products.
Figure 168. Kami Shoji CNF products.
Figure 169. Dual Graft System.
Figure 170. Engine cover utilizing Kao CNF composite resins.
Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
Figure 172. Kel Labs yarn.
Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).
Figure 174. Lignin gel.
Figure 175. BioFlex process.
Figure 176. Nike Algae Ink graphic tee.
Figure 177. LX Process.
Figure 178. Made of Air's HexChar panels.
Figure 179. TransLeather.
Figure 180. Chitin nanofiber product.
Figure 181. Marusumi Paper cellulose nanofiber products.
Figure 182. FibriMa cellulose nanofiber powder.
Figure 183. METNIN™ Lignin refining technology.
Figure 184. IPA synthesis method.
Figure 185. MOGU-Wave panels.
Figure 186. CNF slurries.
Figure 187. Range of CNF products.
Figure 188. Reishi.
Figure 189. Compostable water pod.
Figure 190. Leather made from leaves.
Figure 191. Nike shoe with beLEAF™.
Figure 192. CNF clear sheets.
Figure 193. Oji Holdings CNF polycarbonate product.
Figure 194. Enfinity cellulosic ethanol technology process.
Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 196. XCNF.
Figure 197: Plantrose process.
Figure 198. LOVR hemp leather.
Figure 199. CNF insulation flat plates.
Figure 200. Hansa lignin.
Figure 201. Manufacturing process for STARCEL.
Figure 202. Manufacturing process for STARCEL.
Figure 203. 3D printed cellulose shoe.
Figure 204. Lyocell process.
Figure 205. North Face Spiber Moon Parka.
Figure 206. PANGAIA LAB NXT GEN Hoodie.
Figure 207. Spider silk production.
Figure 208. Stora Enso lignin battery materials.
Figure 209. 2 wt.% CNF suspension.
Figure 210. BiNFi-s Dry Powder.
Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.
Figure 212. Silk nanofiber (right) and cocoon of raw material.
Figure 213. Sulapac cosmetics containers.
Figure 214.  Sulzer equipment for PLA polymerization processing.
Figure 215. Solid Novolac Type lignin modified phenolic resins.
Figure 216. Teijin bioplastic film for door handles.
Figure 217. Corbion FDCA production process.
Figure 218. Comparison of weight reduction effect using CNF.
Figure 219. CNF resin products.
Figure 220. UPM biorefinery process.
Figure 221. Vegea production process.
Figure 222. The Proesa® Process.
Figure 223. Goldilocks process and applications.
Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process.
Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
Figure 226. Worn Again products.
Figure 227. Zelfo Technology GmbH CNF production process.
Figure 228. Absolut natural based fiber bottle cap.
Figure 229. Adidas algae-ink tees.
Figure 230. Carlsberg natural fiber beer bottle.
Figure 231. Miratex watch bands.
Figure 232. Adidas Made with Nature Ultraboost 22.
Figure 233. PUMA RE:SUEDE sneaker
Figure 234. Types of natural fibers.
Figure 235.  Luffa cylindrica fiber.
Figure 236. Pineapple fiber.
Figure 237. Typical structure of mycelium-based foam.
Figure 238. Commercial mycelium composite construction materials.
Figure 239. SEM image of microfibrillated cellulose.
Figure 240. Hemp fibers combined with PP in car door panel.
Figure 241. Car door produced from Hemp fiber.
Figure 242. Natural fiber composites in the BMW M4 GT4 racing car.
Figure 243. Mercedes-Benz components containing natural fibers.
Figure 244. SWOT analysis: natural fibers in the automotive market.
Figure 245. SWOT analysis: natural fibers in the packaging market.
Figure 246. SWOT analysis: natural fibers in the appliances market.
Figure 247. SWOT analysis: natural fibers in the appliances market.
Figure 248. SWOT analysis: natural fibers in the consumer electronics market.
Figure 249. SWOT analysis: natural fibers in the furniture market.
Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD).
Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).
Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).
Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).
Figure 254. Asahi Kasei CNF fabric sheet.
Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 256. CNF nonwoven fabric.
Figure 257. Roof frame made of natural fiber.
Figure 258.Tras Rei chair incorporating ampliTex fibers.
Figure 259. Natural fibres racing seat.
Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers.
Figure 261. Fiber-based screw cap.
Figure 262. Cellugy materials.
Figure 263. CuanSave film.
Figure 264. Trunk lid incorporating CNF.
Figure 265. ELLEX products.
Figure 266. CNF-reinforced PP compounds.
Figure 267. Kirekira! toilet wipes.
Figure 268. DKS CNF products.
Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
Figure 270. CNF products from Furukawa Electric.
Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 272. CNF gel.
Figure 273. Block nanocellulose material.
Figure 274. CNF products developed by Hokuetsu.
Figure 275. Dual Graft System.
Figure 276. Engine cover utilizing Kao CNF composite resins.
Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
Figure 278. Cellulomix production process.
Figure 279. Nanobase versus conventional products.
Figure 280. MOGU-Wave panels.
Figure 281. CNF clear sheets.
Figure 282. Oji Holdings CNF polycarbonate product.
Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner.
Figure 284. XCNF.
Figure 285. Manufacturing process for STARCEL.
Figure 286. 2 wt.% CNF suspension.
Figure 287. Sulapac cosmetics containers.
Figure 288. Comparison of weight reduction effect using CNF.
Figure 289. CNF resin products.
Figure 290. Global revenues in sustainable construction materials, by type 2018-2035 (billions USD).
Figure 291. Typical structure of mycelium-based foam.
Figure 292. Commercial mycelium composite construction materials.
Figure 293. Self-healing bacteria crack filler for concrete.
Figure 294. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).
Figure 295. Self-healing concrete.
Figure 296. Microalgae based biocement masonry bloc.
Figure 297. Classification of aerogels.
Figure 298. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.
Figure 299. Monolithic aerogel.
Figure 300. Aerogel granules.
Figure 301. Internal aerogel granule applications.
Figure 302. 3D printed aerogels.
Figure 303. Lignin-based aerogels.
Figure 304. Fabrication routes for starch-based aerogels.
Figure 305. Schematic of silk fiber aerogel synthesis.
Figure 306. Graphene aerogel.
Figure 307. Schematic of CCUS in cement sector.
Figure 308. Carbon8 Systems’ ACT process.
Figure 309. CO2 utilization in the Carbon Cure process.
Figure 310. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.
Figure 311. Transition to hydrogen-based production.
Figure 312. CO2 emissions from steelmaking (tCO2/ton crude steel).
Figure 313. CO2 emissions of different process routes for liquid steel.
Figure 314. Hydrogen Direct Reduced Iron (DRI) process.
Figure 315. Molten oxide electrolysis process.
Figure 316. Steelmaking with CCS.
Figure 317. Flash ironmaking process.
Figure 318. Hydrogen Plasma Iron Ore Reduction process.
Figure 319. ArcelorMittal decarbonization strategy.
Figure 320. Thermal Conductivity Performance of ArmaGel HT.
Figure 321. SLENTEX® roll (piece).
Figure 322. Neustark modular plant.
Figure 323. HIP AERO paint.
Figure 324. Sunthru Aerogel pane.
Figure 325. Quartzene®.
Figure 326. Schematic of HyREX technology.
Figure 327. EAF Quantum.
Figure 328. CNF insulation flat plates.
Figure 329. Global packaging market by material type.
Figure 330. Routes for synthesizing polymers from fossil-based and bio-based resources.
Figure 331. PHA bioplastic packaging products.
Figure 332. Production capacities of Polyethylene furanoate (PEF) to 2025.
Figure 333. Production capacities of Polyethylene furanoate (PEF) to 2025.
Figure 334. Polyethylene furanoate (Bio-PEF) production capacities 2019-2035 (1,000 tons).
Figure 335. PHA family.
Figure 336. PHA production capacities 2019-2035 (1,000 tons).
Figure 337. Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit.
Figure 338. Scale of cellulose materials.
Figure 339. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.
Figure 340. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.
Figure 341. Cellulose microfibrils and nanofibrils.
Figure 342. TEM image of cellulose nanocrystals.
Figure 343. CNC slurry.
Figure 344. CNF gel.
Figure 345. Bacterial nanocellulose shapes
Figure 346. BLOOM masterbatch from Algix.
Figure 347. Typical structure of mycelium-based foam.
Figure 348. Commercial mycelium composite construction materials.
Figure 349. Types of bio-based materials used for antimicrobial food packaging application.
Figure 350. Schematic of gas barrier properties of nanoclay film.
Figure 351. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
Figure 352. Applications for CO2.
Figure 353. Life cycle of CO2-derived products and services.
Figure 354.  Conversion pathways for CO2-derived polymeric materials
Figure 355. Bioplastics for flexible packaging by bioplastic material type, 2019-2033 (‘000 tonnes).
Figure 356. Bioplastics for rigid packaging by bioplastic material type, 2019-2033 (‘000 tonnes).
Figure 357. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate.
Figure 358. Pluumo.
Figure 359. Anpoly cellulose nanofiber hydrogel.
Figure 360. MEDICELLU™.
Figure 361. Asahi Kasei CNF fabric sheet.
Figure 362. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 363. CNF nonwoven fabric.
Figure 364. Passionfruit wrapped in Xgo Circular packaging.
Figure 365. BIOLO e-commerce mailer bag made from PHA.
Figure 366. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.
Figure 367. Fiber-based screw cap.
Figure 368. CuanSave film.
Figure 369. ELLEX products.
Figure 370. CNF-reinforced PP compounds.
Figure 371. Kirekira! toilet wipes.
Figure 372. Rheocrysta spray.
Figure 373. DKS CNF products.
Figure 374. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.
Figure 375. PHA production process.
Figure 376. AVAPTM process.
Figure 377. GreenPower+™ process.
Figure 378. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 379. CNF gel.
Figure 380. Block nanocellulose material.
Figure 381. CNF products developed by Hokuetsu.
Figure 382. Kami Shoji CNF products.
Figure 383. IPA synthesis method.
Figure 384. Compostable water pod.
Figure 385. XCNF.
Figure 386: Innventia AB movable nanocellulose demo plant.
Figure 387. Shellworks packaging containers.
Figure 388. Thales packaging incorporating Fibrease.
Figure 389. Sulapac cosmetics containers.
Figure 390.  Sulzer equipment for PLA polymerization processing.
Figure 391. Silver / CNF composite dispersions.
Figure 392. CNF/nanosilver powder.
Figure 393. Corbion FDCA production process.
Figure 394. UPM biorefinery process.
Figure 395. Vegea production process.
Figure 396. Worn Again products.
Figure 397. S-CNF in powder form.
Figure 398. Conceptual landscape of next-gen leather materials.
Figure 399. Typical structure of mycelium-based foam.
Figure 400. Hermès bag made of MycoWorks' mycelium leather.
Figure 401. Ganni blazer made from bacterial cellulose.
Figure 402. Bou Bag by GANNI and Modern Synthesis.
Figure 403. Global revenues for bio-based textiles by type, 2018-2035 (millions USD).
Figure 404. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).
Figure 405. Beyond Leather Materials product.
Figure 406. Treekind.
Figure 407. Examples of Stella McCartney and Adidas products made using leather alternative Mylo.
Figure 408. Mushroom leather.
Figure 409. Ecovative Design Forager Hides.
Figure 410. LUNA® leather.
Figure 411. TransLeather.
Figure 412. Reishi.
Figure 413. AirCarbon Pellets and AirCarbon Leather.
Figure 414. Leather made from leaves.
Figure 415. Nike shoe with beLEAF™.
Figure 416.  Persiskin leather.
Figure 417. LOVR hemp leather.
Figure 418. North Face Spiber Moon Parka.
Figure 419. PANGAIA LAB NXT GEN Hoodie.
Figure 420.  Ultrasuede headrest covers.
Figure 421. Vegea production process.
Figure 422. Schematic of production of powder coatings.
Figure 423. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.
Figure 424. PHA family.
Figure 425: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit.
Figure 426: Scale of cellulose materials.
Figure 427. Nanocellulose preparation methods and resulting materials.
Figure 428: Relationship between different kinds of nanocelluloses.
Figure 429. SEM image of microfibrillated cellulose.
Figure 430. Applications of cellulose nanofibers in paints and coatings.
Figure 431: CNC slurry.
Figure 432. Types of bio-based materials used for antimicrobial food packaging application.
Figure 433. BLOOM masterbatch from Algix.
Figure 434. Global market revenues for bio-based coatings by type, 2018-2035 (billions USD).
Figure 435. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.
Figure 436. Dulux Better Living Air Clean Bio-based.
Figure 437. NCCTM Process.
Figure 438. CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:
Figure 439. Cellugy materials.
Figure 440. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).
Figure 441. Rheocrysta spray.
Figure 442. DKS CNF products.
Figure 443. Domsjö process.
Figure 444. CNF gel.
Figure 445. Block nanocellulose material.
Figure 446. CNF products developed by Hokuetsu.
Figure 447. VIVAPUR® MCC Spheres.
Figure 448. BioFlex process.
Figure 449. Marusumi Paper cellulose nanofiber products.
Figure 450. Melodea CNC barrier coating packaging.
Figure 451. Fluorene cellulose ® powder.
Figure 452. XCNF.
Figure 453. Plantrose process.
Figure 454. Spider silk production.
Figure 455. CNF dispersion and powder from Starlite.
Figure 456. 2 wt.% CNF suspension.
Figure 457. BiNFi-s Dry Powder.
Figure 458. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.
Figure 459. Silk nanofiber (right) and cocoon of raw material.
Figure 460. traceless® hooks.
Figure 461. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
Figure 462. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.
Figure 463. Bioalkyd products.
Figure 464. Liquid biofuel production and consumption (in thousands of m3), 2000-2022.
Figure 465. Distribution of global liquid biofuel production in 2022.
Figure 466. Diesel and gasoline alternatives and blends.
Figure 467. SWOT analysis for biofuels.
Figure 468.  Schematic of a biorefinery for production of carriers and chemicals.
Figure 469. Hydrolytic lignin powder.
Figure 470. SWOT analysis for energy crops in biofuels.
Figure 471. SWOT analysis for agricultural residues in biofuels.
Figure 472. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.
Figure 473. SWOT analysis for forestry and wood waste in biofuels.
Figure 474. Range of biomass cost by feedstock type.
Figure 475. Regional production of biodiesel (billion litres).
Figure 476. SWOT analysis for biodiesel.
Figure 477. Flow chart for biodiesel production.
Figure 478. Biodiesel (B20) average prices, current and historical, USD/litre.
Figure 479. Global biodiesel consumption, 2010-2035 (M litres/year).
Figure 480. SWOT analysis for renewable iesel.
Figure 481. Global renewable diesel consumption, 2010-2035 (M litres/year).
Figure 482. SWOT analysis for Bio-aviation fuel.
Figure 483. Global bio-jet fuel consumption to 2019-2035 (Million litres/year).
Figure 484. SWOT analysis for bio-naphtha.
Figure 485. Bio-based naphtha production capacities, 2018-2035 (tonnes).
Figure 486. SWOT analysis biomethanol.
Figure 487. Renewable Methanol Production Processes from Different Feedstocks.
Figure 488. Production of biomethane through anaerobic digestion and upgrading.
Figure 489. Production of biomethane through biomass gasification and methanation.
Figure 490. Production of biomethane through the Power to methane process.
Figure 491. SWOT analysis for ethanol.
Figure 492. Ethanol consumption 2010-2035 (million litres).
Figure 493. Properties of petrol and biobutanol.
Figure 494. Biobutanol production route.
Figure 495. Biogas and biomethane pathways.
Figure 496. Overview of biogas utilization.
Figure 497. Biogas and biomethane pathways.
Figure 498. Schematic overview of anaerobic digestion process for biomethane production.
Figure 499. Schematic overview of biomass gasification for biomethane production.
Figure 500. SWOT analysis for biogas.
Figure 501. Total syngas market by product in MM Nm³/h of Syngas, 2021.
Figure 502. SWOT analysis for biohydrogen.
Figure 503. Waste plastic production pathways to (A) diesel and (B) gasoline
Figure 504. Schematic for Pyrolysis of Scrap Tires.
Figure 505. Used tires conversion process.
Figure 506. Total syngas market by product in MM Nm³/h of Syngas, 2021.
Figure 507. Overview of biogas utilization.
Figure 508. Biogas and biomethane pathways.
Figure 509. SWOT analysis for chemical recycling of biofuels.
Figure 510. Process steps in the production of electrofuels.
Figure 511. Mapping storage technologies according to performance characteristics.
Figure 512. Production process for green hydrogen.
Figure 513. SWOT analysis for E-fuels.
Figure 514. E-liquids production routes.
Figure 515. Fischer-Tropsch liquid e-fuel products.
Figure 516. Resources required for liquid e-fuel production.
Figure 517. Levelized cost and fuel-switching CO2 prices of e-fuels.
Figure 518. Cost breakdown for e-fuels.
Figure 519.  Pathways for algal biomass conversion to biofuels.
Figure 520. SWOT analysis for algae-derived biofuels.
Figure 521. Algal biomass conversion process for biofuel production.
Figure 522. Classification and process technology according to carbon emission in ammonia production.
Figure 523. Green ammonia production and use.
Figure 524. Schematic of the Haber Bosch ammonia synthesis reaction.
Figure 525. Schematic of hydrogen production via steam methane reformation.
Figure 526. SWOT analysis for green ammonia.
Figure 527. Estimated production cost of green ammonia.
Figure 528. Projected annual ammonia production, million tons.
Figure 529. CO2 capture and separation technology.
Figure 530. Conversion route for CO2-derived fuels and chemical intermediates.
Figure 531.  Conversion pathways for CO2-derived methane, methanol and diesel.
Figure 532. SWOT analysis for biofuels from carbon capture.
Figure 533. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.
Figure 534. Global CO2 capture from biomass and DAC in the Net Zero Scenario.
Figure 535.  DAC technologies.
Figure 536. Schematic of Climeworks DAC system.
Figure 537. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.
Figure 538.  Flow diagram for solid sorbent DAC.
Figure 539. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.
Figure 540. Global capacity of direct air capture facilities.
Figure 541. Global map of DAC and CCS plants.
Figure 542. Schematic of costs of DAC technologies.
Figure 543. DAC cost breakdown and comparison.
Figure 544. Operating costs of generic liquid and solid-based DAC systems.
Figure 545. Conversion route for CO2-derived fuels and chemical intermediates.
Figure 546.  Conversion pathways for CO2-derived methane, methanol and diesel.
Figure 547. CO2 feedstock for the production of e-methanol.
Figure 548. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.
Figure 549. SWOT analysis: CO2 utilization in fuels.
Figure 550. Audi synthetic fuels.
Figure 551. Bio-oil upgrading/fractionation techniques.
Figure 552. SWOT analysis for bio-oils.
Figure 553. ANDRITZ Lignin Recovery process.
Figure 554. ChemCyclingTM prototypes.
Figure 555. ChemCycling circle by BASF.
Figure 556. FBPO process
Figure 557. Direct Air Capture Process.
Figure 558. CRI process.
Figure 559. Cassandra Oil  process.
Figure 560. Colyser process.
Figure 561. ECFORM electrolysis reactor schematic.
Figure 562. Dioxycle modular electrolyzer.
Figure 563. Domsjö process.
Figure 564. FuelPositive system.
Figure 565. INERATEC unit.
Figure 566. Infinitree swing method.
Figure 567. Audi/Krajete unit.
Figure 568. Enfinity cellulosic ethanol technology process.
Figure 569: Plantrose process.
Figure 570. Sunfire process for Blue Crude production.
Figure 571. Takavator.
Figure 572. O12 Reactor.
Figure 573. Sunglasses with lenses made from CO2-derived materials.
Figure 574. CO2 made car part.
Figure 575. The Velocys process.
Figure 576. Goldilocks process and applications.
Figure 577. The Proesa® Process.
Figure 578. Closed-loop manufacturing.
Figure 579. Sustainable supply chain for electronics.
Figure 580. Flexible PCB.
Figure 581. Vapor degreasing.
Figure 582. Multi-layered PCB.
Figure 583. 3D printed PCB.
Figure 584. In-mold electronics prototype devices and products.
Figure 585. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components.
Figure 586. Typical structure of mycelium-based foam.
Figure 587. Flexible electronic substrate made from CNF.
Figure 588. CNF composite.
Figure 589. Oji CNF transparent sheets.
Figure 590. Electronic components using cellulose nanofibers as insulating materials.
Figure 591. BLOOM masterbatch from Algix.
Figure 592. Dell's Concept Luna laptop.
Figure 593.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics.
Figure 594. 3D printed circuit boards from Nano Dimension.
Figure 595. Photonic sintering.
Figure 596. Laser-induced forward transfer (LIFT).
Figure 597. Material jetting 3d printing.
Figure 598. Material jetting 3d printing product.
Figure 599. The molecular mechanism of the shape memory effect under different stimuli.
Figure 600. Supercooled Soldering™ Technology.
Figure 601. Reflow soldering schematic.
Figure 602. Schematic diagram of induction heating reflow.
Figure 603. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.
Figure 604. Types of PCBs after dismantling waste computers and monitors.
Figure 605. Global PCB revenues 2018-2035 (billions USD), by substrate types.
Figure 606. Global sustainable PCB revenues 2018-2035, by type (millions USD).
Figure 607. Global sustainable ICs revenues 2018-2035, by type (millions USD).
Figure 608. Piezotech® FC.
Figure 609. PowerCoat® paper.
Figure 610. BeFC® biofuel cell and digital platform.
Figure 611. DPP-360 machine.
Figure 612. P-Flex® Flexible Circuit.
Figure 613. Fairphone 4.
Figure 614. In2tec’s fully recyclable flexible circuit board assembly.
Figure 615. C.L.A.D. system.
Figure 616. Soluboard immersed in water.
Figure 617. Infineon PCB before and after immersion.
Figure 618. Nano OPS Nanoscale wafer printing system.
Figure 619. Stora Enso lignin battery materials.
Figure 620. 3D printed electronics.
Figure 621. Tactotek IME device.
Figure 622. TactoTek® IMSE® SiP - System In Package.
Figure 623. Verde Bio-based resins.
Figure 624. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).
Figure 625. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).
Figure 626. sunliquid® production process.
Figure 627. Spider silk production.

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Aduro Clean Technologies
  • Agilyx
  • Alt.Leather
  • Alterra
  • Amsty
  • APK AG
  • Aquafil
  • Arcus
  • Arda Biomaterials
  • Avantium
  • Axens
  • BASF Chemcycling
  • Beyond Leather Materials ApS
  • BiologiQ
  • Biome Bioplastics
  • Biophilica
  • Bpacks
  • Braskem
  • Bucha Bio
  • Byogy Renewables
  • Caphenia
  • Carbios
  • CJ CheilJedang
  • DePoly
  • Dow
  • Earthodic
  • Eastman Chemical
  • Ecovative
  • Ensyn
  • EREMA Group GmbH
  • Evolved by Nature
  • Extracthive
  • ExxonMobil
  • FlexSea
  • FORGE Hydrocarbons Corporation
  • Fych Technologies
  • Garbo
  • Gozen Bioworks
  • gr3n SA
  • Hyundai Chemical
  • cytos
  • Ioniqa
  • Itero
  • Kelpi
  • Kvasir Technologies
  • Licella
  • LignoPure GmbH
  • MeduSoil
  • Modern Meadow
  • Mura Technology
  • MycoWorks
  • Natural Fiber Welding
  • Notpla
  • Origin Materials
  • Pack2Earth
  • PersiSKIN
  • Plastic Energy
  • Plastogaz SA
  • Polybion
  • ProjectEx
  •  Polystyvert
  • Pyrowave
  • Recyc'ELIT
  • RePEaT Co., Ltd.
  • revalyu Resources GmbH
  • SA-Dynamics
  • Solugen
  • Stora Enso
  • Strong By Form
  • Sulapac
  • UBQ Materials
  • UNCAGED Innovations
  • Verde Bioresins
  • ZymoChem

Methodology

Loading
LOADING...