Cancer Cell Therapy Markets

Description: Traditionally, treatment of disease is carried out by small molecules that target specific cell types. In diseases such as cancer, the treatment is meant to kill cancer cells, leading to the removal or at least the inhibition of cancer cell proliferation. In other circumstances, a variety of therapeutic molecules have been utilized lead the disease cells to perform a specific function that they normally do not. These include small molecules, peptides, proteins, antibodies, anti-sense RNAs and ribozymes. In the case of cell therapy, as the name indicates, treatment is carried out with cells instead of small molecules. In cell therapy, cells are given to the patient as the therapeutic delivery system for a specific disease to achieve therapeutic benefit.

The purpose of this report is to describe the market segment of the cell therapy market aimed specifically at cancer therapy. Moreover, a review of cellular agents that are related to the chemical and cellular constituents of blood or other tissues for cancer care of the patient is addressed in this study. The two most important areas where such agents are used are in the hospital and the clinic. Emphasis is on those companies and products that are actively developing and marketing cell therapeutic agents and supplies for treating cancer patients.

Contents:

1. Overview
 1.1 About this Report
 1.2 Scope of the Report
 1.3 Objectives
 1.4 Methodology
 1.5 Executive Summary

2. Biology of Cellular Therapy for Cancer: Different Cell Types Deployed and Disease Areas Addressed
 2.1 Components of the Hematopoietic System that can be Leveraged for Cancer Cellular Therapy
 2.1.1 Dendritic Cells
 2.1.2 Cytotoxic T Lymphocytes (CTLs)
 2.1.3 Natural Killer (NK) Cells
 2.1.4 Tumor Infiltrating Lymphocytes (TILs) also known as Lymphokine-activated Killers (LAKs)
 2.1.5 Hematopoietic Stem Cells (HSCs)
 2.2 Adult Stem Cell-based Therapies (ASCs)
 2.3 Stem Cell-based Cellular Therapies
 2.3.1 Effectiveness in Transplants of Peripheral Versus Bone Marrow Stem Cells
 2.3.2 What do HSCs do and what Factors are Involved in these Activities?
 2.3.3 Self-renewal of HSCs
 2.3.4 Differentiation of HSCs into Components of the Blood and Immune System
 2.3.5 Migration of HSCs Into and Out of Marrow and Tissues
 2.3.6 Apoptosis and Regulation of HSC Populations
 2.4 Clinical Uses of HSC
 2.4.1 Leukemia and Lymphoma
 2.4.2 Inherited Blood Disorders
 2.4.3 HSC Rescue in Cancer Chemotherapy
 2.4.4 Graft-Versus-Tumor Treatment of Cancer
 2.4.5 Other Clinical Applications of HSCs
 2.5 What are the Challenges and Barriers to the Development of New and Improved Treatments Using HSCs?
 2.5.1 Boosting the Numbers of HSCs
 2.5.2 The Immune System in Host, Graft and Pathogen Attacks
 2.5.3 Understanding the Differentiating Environment and Developmental Plasticity
 2.6 Cancer Stem Cells
 2.6.1 The Microenvironment
 2.6.2 3-D Cultures and Spheres
 2.6.3 Targeted Therapies
 2.7 Cellular Immunotherapy with DCs in Cancer
 2.7.1 Routes of DC Delivery
2.7.1.1 Autologous Tumor Cell Vaccines and DC Therapy
2.7.1.2 The Use of DCs for Cancer Vaccination
2.7.2 Immune Response to Vaccination
2.7.3 Clinical Studies with DCs
2.7.4 Future of DC Therapy for Cancer
2.8 Tumor Immunotherapy Using DCs Pulsed with Tumor-derived Peptides
2.9 Recent Advances on the Use of Stem Cells in Cancer Therapies
2.10 Growth Factor Signaling Inhibitors
2.10.1 EGFR Family Member Inhibitors
2.10.2 Hedgehog, Wnt/ß-Catenin and Notch Signaling Inhibitors
2.10.3 Combination Therapies
2.10.4 High-dose Cancer Therapy Plus HSCs
2.11 Cancer/Testis Antigens (CTAs): A Novel Cancer Marker?
2.12 Minimal Residual Disease (MRD) Post-Bone Marrow Transplantation for Hemato-Oncological Diseases
2.12.1 Methods for Detection of MRD
2.12.1.1 Nonmolecular Methods
2.12.1.2 Immunophenotyping
2.12.1.3 Restriction Fragment Length Polymorphism (RFLP)
2.12.1.4 Southern Blotting for Detection of Clonal Genetic Markers
2.12.1.5 PCR for Detection of Clonal Genetic Markers
2.12.1.6 PCR of Minisatellite (VNTR) Sequences
2.12.1.7 PCR of Microsatellite Sequences
2.12.1.8 Y Chromosome-specific PCR
2.12.1.9 PCR-Amelogenin: Improved Single-step PCR Assay for Gender Identification
2.12.1.10 Quantitative PCR
2.12.1.11 Two-color Fluorescence In situ Hybridization (FISH): BCR/ABL Fusion Gene Detection
2.12.1.12 FISH in Sex-Mismatch Transplantation
2.13 Clinical Implications of Minimal Residual Disease
2.13.1 Upfront Transplantation Decision Based on MRD Findings
2.13.2 Prediction of Relapse Post-BMT
2.13.3 Adoptive Immunotherapy for CML Patients Relapsing after BMT
2.13.4 Mixed Allogeneic Chimerism as an Approach to Transplantation Tolerance
2.13.5 BMT in Thalassemia and SAA and Detection of MRD
2.13.6 Organ Transplantation
2.14 Genetic Engineering of Tumor Cells
2.14.1 Hybridoma Process
2.14.2 Hollow-fiber Perfusion
2.14.3 Heat Shock Protein Technology
2.14.4 Stem Cells Used as Platforms in Anticancer Therapies
2.14.5 Stem Cell Transplantation in Cancer
2.14.6 Bone Marrow Stem Cell Transplantation
2.14.7 Cellular Immunotherapy Ex vivo Mobilization of Immune Cells
2.14.8 Peripheral Blood Stem Cell Transplantation
2.14.9 Autologous Stem Cell Transplantation
2.14.10 Complications of Stem Cell Transplants in Cancer
2.14.11 Umbilical Cord Blood Transplant for Leukemia
2.14.12 MSC Transplantation in Cancer
2.14.13 hESC-derived NK Cells for Treatment of Cancer Long-term Results of HSC Transplantation
2.15 The Human Immune System
2.16 Cell Therapy Commercialization

3. Current Status of Cellular Therapies for Cancer
3.1 Introduction to the Cancer Vaccine Space
3.1.1 Tumor Cell Vaccines
3.1.2 Antigen Vaccines
3.1.3 DC Vaccines
3.1.3.1 Dendritic/Tumor Cell Fusion
3.1.3.2 Limitations of DC Vaccines for Cancer
3.1.3.3 The Future of Cell Therapy with DCs
3.1.4 Anti-Idiotype Vaccines
3.1.5 Vector-based Vaccines
3.1.6 Heat Shock Protein-based Vaccines
3.1.7 Autologous Tumor Cell Vaccines
3.1.8 Lymphocyte-based Cancer Therapies
3.1.8.1 Adoptive Immunotherapy
3.1.8.2 Rescue of CD8+ T Cells for Use in Tumor Immunotherapy
3.1.8.3 Expansion of Antigen-specific CTLs
3.1.8.4 Genetically Targeted T Cells for Treating B Cell Malignancies
3.1.8.5 LAK Cell Therapy
3.1.8.6 Tumor-infiltrating Lymphocyte (TIL) Therapy
3.2 Vaccines in Development
3.2.1 GVAX Immunotherapies (Cell Genesys)
3.2.2 Oncophage (Antigenics)
3.2.3 Provenge (P-11) (Dendreon)
3.2.4 Sipuleucel-T (Dendreon)
3.2.5 DCVax® (Northwest Biotherapeutics)
3.2.6 Stimuvax® (EMD Pharmaceuticals)
3.2.7 JuvImmune™ (Juvaris BioTherapeutics)
3.2.8 Allovector-7® (Vical)
3.2.9 BiovaxID (Biovest)
3.2.10 BLP25 Liposome Vaccine (Merck & Co.)
3.2.11 Cervarix (GlaxoSmithKline)
3.2.12 Collidem® DC Vaccine (IDM Pharma)
3.2.13 EP-2101 Lung Cancer Vaccine (IDM Pharma)
3.2.14 Favild (Favrille)
3.3 Clinical Trials Pipeline for Various Types of Cellular Therapy for Cancer
3.4 Cancer Therapy Based on Natural Killer Cells
3.5 Cancer Stem Cells
3.6 ESC Vaccine for Prevention of Lung Cancer
3.7 Cell-based Therapies for Malignant Brain Tumors
3.7.1 DC Therapy for Brain Tumors
3.7.2 Targeting Stem Cells in Brain Tumors
3.7.3 Conclusions
3.8 Vaccine for Non-Hodgkin's Lymphoma
3.8.1 Non-Hodgkin's Lymphoma
3.8.2 Monoclonal Antibody Treatment
3.8.3 Development of Patient-specific Vaccine for NHL
3.8.4 BiovaxID Active Immunotherapy
3.8.5 BiovaxID Treatment and Production Process
3.8.6 Favild
3.8.7 MyVax
3.8.8 Sector Competition
3.9 Bone Marrow Transplants
3.10 The Market Opportunity for the Use of Stem Cells in the Cancer Therapy Marketplace

4. Tumor Antigens, Cancer Vaccines and Cellular Therapy
4.1 Scope of this Chapter
4.2 Tumor Antigens and Classes
4.3 Classes of Cancer Vaccines Based on Tumor Antigens
4.3.1 Antigen/Adjuvant Vaccines
4.3.2 Whole Cell Tumor Vaccines
4.3.3 DC Vaccines
4.3.4 Viral Vectors and DNA Vaccines
4.3.5 Idiotype Vaccines
4.4 Antigens that are Commonly Found in Cancer Vaccines under Investigation Today
4.4.1 Treatment Vaccines
4.4.2 Prevention Vaccines
4.5 Cancer Vaccines that have Reached Phase III Trials
4.6 Selected Companies in the Tumor Antigens and Vaccines Space with Novel Technology Platforms
4.6.1 Antigenics
4.6.2 AlphaVax
4.6.3 Argonex
4.6.4 Bavarian Nordic
4.6.5 Biomira
4.6.6 CancerVax Corp. (Micromet, Inc.)
4.6.7 Corixa (Acquired by GlaxoSmithKline)
4.6.8 CTL Immunotherapies
4.6.9 Dendreon
4.6.10 GenEra
4.6.11 GeneMax Pharmaceuticals
4.6.12 Genzyme Molecular Oncology
4.6.13 IDM

5. Other Competing Antibody Technologies
5.1 Competition
5.2 Companies Developing Human Antibodies
5.3 Antibody Sequence Libraries
5.4 Recombinant DNA Sequences
5.5 Companies with Antibody Products in Clinical Trials
5.6 Immunoconjugates
5.7 Protein Products

6. The Future of Cell Therapy Against Cancer
6.1 Innovations in Cell-based Therapy of Cancer
6.1.1 Cancer Therapy-based on NK-92 Cells
6.1.2 Myoblast-mediated Gene Therapy
6.1.3 Cancer Stem Cells
6.1.4 MSCs for the Treatment of Gliomas

7. Government Regulation of Cell Therapy Products
7.1 Pharmaceutical Product Regulation
7.1.1 Preclinical Phase
7.1.2 Biologics
7.1.3 Clinical Phase
7.2 New Drug Application (NDA) or Biologics License Application (BLA)
7.3 Fast-Track Review
7.4 Post-Approval Phase
7.5 Hatch-Waxman Act
7.6 Abbreviated New Drug Applications (ANDAs)
7.7 505(b)(2) Applications
7.8 Patent Term Restoration
7.9 ANDA and 505(b)(2) Applicant Challenges to Patents and Generic Exclusivity
7.10 Non-Patent Marketing Exclusivities
7.11 Orphan Drug Designation and Exclusivity
7.12 Cell Debris Therapy Ban

8. Companies involved in Cancer Cell Therapy
8.1 Companies Involved in Cell-based Cancer Therapy

9. Company Profiles
9.1 Accentia Biopharmaceuticals, Inc.
9.2 Antigenics, Inc.
9.3 Biomira, Inc.
9.4 Biovest International, Inc.
9.5 Cell Genesys, Inc.
9.6 Dendreon Corp.
9.7 EMD Serono (Parent Company is Merck KGaA, Darmstadt, Germany)
9.8 Favrille, Inc.
9.9 Genitope Corporation
9.10 Genzyme Molecular Oncology
9.11 GlaxoSmithKline
9.12 IDM Pharma, Inc.
9.13 Juvaris BioTherapeutics, Inc.
9.14 Medarex, Inc.
9.15 Merck & Co., Inc.
9.16 Micromet, Inc.
9.17 Northwest Biotherapeutics, Inc.
9.18 Titan Pharmaceuticals, Inc.
9.19 Vical, Inc.
9.20 Cyclacel Pharmaceuticals, Inc.

Appendix I: List of Human Clusters of Differentiation (CD) Antigens
Appendix II: Glossary of Terms in the Stem Cells Space
Appendix III: Markers Commonly Used to Identify Stem Cells and to Characterize Differentiated Cell Types (Hematopoietic-focused)

INDEX OF FIGURES

Figure 2.1: Autologous Process for Cancer Vaccination
Figure 2.2: Patient Treatment Schedule for Second Line Cancer Cell Therapy
Figure 2.3: Cell Maturation Process
Figure 2.4: CTL Cell Division
Figure 2.5: Prostate Specific Membrane Antigen
Figure 2.6: Exosomes 39
Figure 2.7: Current End-user Utilization Category of CSCs
Figure 2.8: Current End-user Utilization Category of Adult Stem Cells (ASCs)
Figure 2.9: Current End-user Utilization Category of hESCs
Figure 2.10: Current End-user Utilization Category of Human Cord Blood Stem Cells
Figure 3.1: Cancer Vaccine Active Immune-Therapy Process
Figure 3.2: Current End-user Utilization Category of CSCs

INDEX OF TABLES

Table 2.1: TC Cell Activation
Table 2.2: Innate Versus Adaptive Immunity
Table 2.3: Proposed Cell-Surface Markers of Undifferentiated HSCs
Table 3.1: Clinical Trials for Autologous Tumor Cell Vaccines
Table 3.2: Pipeline of Cancer Vaccines
Table 3.3: List of Cell Therapy Clinical Trials
Table 3.4: Distribution of Adoptive Immunotherapy of Cancer Clinical Studies being Performed Worldwide
Table 3.5: Clinical Studies Utilizing MSCs
Table 3.6: Distribution of MSC-based Cancer Clinical Studies being Performed Worldwide
Table 3.7: HSC-based Cancer Therapy
Table 3.8: Distribution of HSC-based Cancer Clinical Studies Being Performed Worldwide
Table 3.9: Characteristics of Different Stem Cell Types and Associated Market Opportunity
Table 3.10: Segmentation of the Stem Cell Market by Type/Lineage of Stem Cell
Table 4.1: Classes of Tumor Antigens
Table 4.2: Cancer Vaccines in Phase III Clinical Trials
Table 9.1: Cell Genesys Clinical Pipeline
Table 9.2: Favrille Development Programs

Ordering:
Order Online - http://www.researchandmarkets.com/reports/590786/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Cancer Cell Therapy Markets
Web Address: http://www.researchandmarkets.com/reports/590786/
Office Code: SCD2LPPG

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF)</td>
<td>USD 2500</td>
</tr>
<tr>
<td>Single User:</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF)</td>
<td>USD 5000</td>
</tr>
<tr>
<td>1 - 10 Users:</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF)</td>
<td>USD 7500</td>
</tr>
<tr>
<td>Enterprisewide:</td>
<td></td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * _______________________
Job Title: ____________________________
Organisation: _________________________
Address: ______________________________
City: _________________________________
Postal / Zip Code: _____________________
Country: ______________________________
Phone Number: _________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp