Analyzing Microwave Power Transmission & Solar Power Satellite Systems
2015

Description: Microwave power transmission (MPT) involves the usage of microwaves to transmit power through outer space or the atmosphere without the need for wires. It is a sub-type of the more general wireless energy transfer methods, and is the most interesting because microwave devices offer the highest efficiency of conversion between DC-electricity and microwave radiative power.

Following World War II, which saw the development of high-power microwave emitters known as cavity magnetrons, the idea of using microwaves to transmit power was researched. In 1964, William C. Brown demonstrated a miniature helicopter equipped with a combination antenna and rectifier device called a rectenna. The rectenna converted microwave power into electricity, allowing the helicopter to fly. In principle, the rectenna is capable of very high conversion efficiencies - over 90% in optimal circumstances.

Most proposed MPT systems now usually include a phased array microwave transmitter. While these have lower efficiency levels they have the advantage of being electrically steered using no moving parts, and are easier to scale to the necessary levels that a practical MPT system requires.

This research presents a complete analysis of the myriad uses of Microwave Power Transmission, and one of its biggest application – Solar Power Satellite Systems. In its report, Analyzing Microwave Power Transmission & Solar Power Satellite Systems, Aruvian's R'search puts forth an analytical view of wireless transmission systems, the basics of microwave power transmission systems, its uses, benefits, challenges facing the technology, global activities going on in the field of MPT, and its applications.

One of the biggest applications of microwave power transmission at the moment is its utility in solar power satellite systems, or SPS. The report takes an in-depth view on the basics of the system, how microwave power transmission is used in SPS, the challenges facing SPS, environmental and health impact of the SPS and much more. The report further also analyzes the Space Solar Power System (SSPS), delving into the vast amount of research conducted on this topic by NASA.

The leading industry contributors to the field of microwave power transmission is also looked at in the report.

Contents:
A. Executive Summary
B. Understanding the Transmission Medium
C. Analyzing Wireless Energy Transfer/Wireless Power Transmission
 C.1 Overview
 C.2 Modern Day Usage of Wireless Power Transmission
 C.3 Determining the Power & Size Levels
 C.4 Efficiency of Wireless Power Transmission Systems
 C.5 Near Field Wireless Transmission Techniques
 C.5.1 Induction
 C.5.2 Resonant Induction
 C.6 Far Field Wireless Transmission Techniques
 C.6.1 Radio & Microwave
 C.6.2 Laser
 C.6.3 Electrical Conduction
D. Introduction to Microwave Power Transmission
 D.1 History of Microwave Power Transmission
 D.2 Overview of Microwave Power Transmission
 D.3 Safety Concerns
 D.4 Basic Idea behind MPT
 D.5 Uses of MPT
I.3.5 Trends in Rectenna Research
I.3.6 Commercialization of Rectennas
I.3.7 Technology for Establishing a Ground Network

J. Effects of the SPS
J.1 Environmental Impact of the SPS Microwave Beam
J.2 Impact of SPS on Earth
J.3 Impact on Communication
J.4 Effect of MPT on Human Health

K. Technical Issues with SPS

L. SPS Radio Technologies
L.1 Microwave Power Transmission
L.2 Microwave Power Devices
L.3 Rectennas
L.4 Calibration & Control

M. Analyzing the Different Solar Power Satellite Models
M.1 'Abacus' Satellite Configuration
M.2 JAXA Models
M.3 Glaser SPS Concept
M.4 SPS2000
M.5 'SolarDisc' Space Solar Power Concept

N. Analyzing the Space Solar Power System & MPT
N.1 Introduction
N.2 Analysis of the System
N.2.1 Analyzing the Microwave Power Transmission Subsystem
N.2.2 Analyzing the Beam Forming and Control Subsystem
N.2.3 Analyzing the Microwave Receiving & Power Rectifying Subsystem
N.3 Analysis of the Major Subsystem Accomplishments
N.3.1 Accomplishments of the Microwave Power Transmission Subsystem
N.3.2 Accomplishments of the Beam Forming and Control Subsystem
N.3.3 Accomplishments of the Microwave Receiving & Power Rectifying Subsystem

O. Space Solar Power Activities of NASA
O.1 Introduction
O.2 Defining Space Solar Power
O.3 Importance of Space Solar Power
O.4 Analyzing Recent SSP Findings
O.5 Analyzing SPS & SSP Activities in the United States - A Historical Look
O.6 NASA's 'Fresh Look' Study
O.6.1 Analyzing the SunTower SPS System
O.6.2 Analyzing the Solar Disc SPS System
O.6.3 Conclusion
O.7 Analyzing the SSP Concept Definition Study by NASA
O.8 Analyzing the SSP Exploratory Research & Technology (SERT) Program
O.8.1 The Abacus Concept
O.8.2 The Integrated Symmetrical Concentrator Concept
O.8.3 Conclusion of SERT in 2000
O.9 Role of the National Research Council
O.10 Current NASA R&D in SSP

P. Space Solar Power Activities in Japan
P.1 Analyzing the JAXA Models
P.1.1 Challenges with the 2001 Model
P.1.2 Challenges with the 2002 Model
P.1.3 Looking at the 2003 Model

Q. Case Studies
Q.1 Microwave Power Transmission in China
Q.2 Microwave Power Transmission in Indonesia
R. Leading Industry Contributors
R.1 Anaren Inc
R.2 Conolog Corporation
R.3 CPI International Inc
R.4 Emrise Corporation
R.5 Kevlin Corporation
R.6 L-3 Electron Technologies Inc
R.7 MEGA Industries LLC
R.8 Micronetics, Inc
R.9 Microwave Engineering Corporation
R.10 Microwave Power Devices, Inc
R.11 Microwave Research Corporation
R.12 Microwave Transmission Systems, Inc
R.13 Norsat International Inc
R.14 Phase Matrix, Inc
R.15 RPG Transmission Limited
R.16 Satellite Communication Systems (SCS)
R.17 Tyco Electronics

S. Future Perspective: Microwave Power Transmission

T. Appendix

U. Glossary of Terms

Ordering: Order Online - http://www.researchandmarkets.com/reports/604386/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

- **Product Name:** Analyzing Microwave Power Transmission & Solar Power Satellite Systems 2015
- **Web Address:** http://www.researchandmarkets.com/reports/604386/
- **Office Code:** SCDVVBC9

Product Formats
Please select the product formats and quantity you require:

- **Electronic (PDF) - Single User:** USD 875
- **Electronic (PDF) - Site License:** USD 1000
- **Hard Copy:** USD 1250 + USD 56 Shipping/Handling
- **CD-ROM:** USD 1250 + USD 56 Shipping/Handling
- **Electronic (PDF) - Enterprisewide:** USD 1250

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

- **Title:** [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
- **First Name:** ___________________________ **Last Name:** ___________________________
- **Email Address:** * ___________________________
- **Job Title:** ___________________________
- **Organisation:** ___________________________
- **Address:** ___________________________
- **City:** ___________________________
- **Postal / Zip Code:** ___________________________
- **Country:** ___________________________
- **Phone Number:** ___________________________
- **Fax Number:** ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World