How 3D Memory Stacks Up

Description: With NAND flash facing scaling challenges, 3D memory stacks are being explored as possible candidates to replace NAND flash. This report compares the technology, challenges and cost of various 3D memory options including stacked charge trapping technologies from Samsung and Toshiba, 3D memory from SanDisk, Samsung and others.

Mainstream NAND flash memories are currently manufactured on 4xnm processes with major NAND flash vendors migrating to 3xnm this year. In the race to reduce costs, NAND flash manufacturers are developing 2xnm technology, however with performance and reliability characteristics severely degraded relative to the 4xnm generation, 2xnm floating gate NAND flash could be the last process technology generation. What's next?

NAND flash vendors have been exploring a variety of alternatives including spin-torque MRAM, nanocrystal memory, phase change memory and resistive memory. However as lithographic scaling becomes more challenging, companies are turning their sights to vertically stacked implementations of memory cells or 3D memory. Among the candidates: stacked NAND technologies employing charge trapping technology, vertical memory cells etched in a pillar and stackable cross-point memory arrays.

It is the aim of this report to explore in detail the feasibility of each of these alternatives as a candidate to replace NAND flash memories within the next four years.

Contents:

Contents
List of Figures
List of Tables
Executive Summary
Introduction
NAND Flash Memory
NAND Flash Memory Technology
Scaling Challenges
3D Memory Alternatives
Samsung Stacked TANOS
Concept
Advantages and Disadvantages
Challenges
Toshiba Bit-Cost Scalable NAND
Concept
Advantages and Disadvantages
Challenges
Cross-point Memory Arrays
Concept
Storage Element
Comparison of 3D Memory Concepts
Key Parameters of stacked NAND
Process Complexity
Performance
Endurance
Power Consumption
Scalability
Cost
Key Parameters of vertical NAND (BiCS)
Bit Size
Process Complexity
Cell Efficiency
Yield
Performance
Endurance
Power Consumption
Scalability
Cost
Key Parameters of Stacked Cross-Point Array Memory
Bit Size
Process Complexity
Cell Efficiency
Yield
Performance
Endurance
Power Consumption
Scalability
Cost
Summary
List of Figures:

Figure 1. NAND Flash Technology Evolution
Figure 2. NAND Flash Memory Gap Fill
Figure 3. NAND Flash Memory Coupling Ratio and Cross-talk
Figure 4. Electrons Stored on the Floating Gate
Figure 5. Samsung 32Gb CTF Memory
Figure 6. Estimation of NAND fabrication costs as the bit density increases for conventional planar and stacked cell
Figure 7. Schematic cross section of the 3-D TANOS NAND showing a first arrangement of cell strings on Si substrate level and a second level of NAND memory cell strings stacked above
Figure 8. SEMs of 3D stacked NAND cell string. The 2nd active layer is SOI-like perfect single crystal
Figure 9. Layout and vertical structure of word-lines and x-decoders for the doubly stacked NAND flash memory cell array.
Figure 10. Key process steps of 3D NAND memory.
Figure 11. Comparison of erase operation (a) well bias initiated erase by block, (b) erase by page without well bias in the floating body case
Figure 12. (a) TEM cross section image of LEG Si film; Inset image shows sub-grain boundary in protrusion. (b) Modelling of LEG process; selective melting of a-Si film and solidification from seed.
Figure 13. Process scheme with amorphous layer formation on seeds to initiate laser epitaxial growth of single crystal Si film resulting in stacked transistor bodies for 3D memories.
Figure 14. Tilted SEM image with protrusions which are precisely located in the center between neighbouring seeds.
Figure 15. Tri-gate structure of the TFT device based SONOS memory cell (Macronix)
Figure 16. TEM cross sections of TFT NAND strings perpendicular to the wordline and along the wordline direction
Figure 17. Schematic illustration of thermal budget impact on device structure: S/D junctions between NAND wordlines diffuse below gate contacts and cause punchthrough device failure.
Figure 18. Simulated temperature profiles for various laser pulse durations. The penetration depths can be
controlled by the pulse durations.

Figure 19. The basic concept of the DG-TFT-SONOS Flash showing simultaneous shielding of stored charge during pass voltage application and intimate electrical interaction for good short channel control.

Figure 20. XTEM along NAND string channel of the dual gate SONOS devices

Figure 21. SIMS analysis of antimony-implanted LPCVD amorphous silicon that subsequently underwent the illustrated thermal steps. This mimics the behavior of the source and drain dopant during processing. Negligible diffusion occurs.

Figure 22. Sheet resistance of antimony implanted into LPCVD amorphous silicon and annealed.

Figure 23. Cycling endurance of the mid-cell of a 32 cell string of minimum feature sized devices. No other second-gated memory devices are used in the cycling.

Figure 24. Retention after cycling 105 cycles showing good performance after extrapolation to 10 years.

Figure 25. Equivalent circuit of the BiCS arrangement of vertical NAND strings.

Figure 26. Birds-eye view of BiCS flash memory. NCG is the number of control gates. NSG is the number of rows of pillars sharing an upper select gate.

Figure 27. (a) Cross section of BiCS flash memory string, (b) Cross section of vertical SONOS cell

Figure 28. Stair-like structure at the edge of control gate plates and upper select gate pitch.

Figure 29. Fabrication sequence of BiCS flash memory

Figure 30. Cross sectional SEM image and schematic illustration of the latest reported BiCS cell array.

Figure 31. Id-Vg characteristics after program and erase operation of each of the different cells of a NAND string (non-optimized structure with respect to disturb).

Figure 32. Schematic potential profile in unselected pillars during program operation. The potential of pillars boosted by V_{pgm} is seen to be higher than V_{pass} and a negative V_{th} shift of the cell to be programmed is achieved.

Figure 33. V_{th} shift after program disturb of programmed cells in unselected pillars. A negative V_{th} shift is suppressed if suitable V_{pass} is selected.

Figure 34. Improved concept of changing lower select gate plates to line and space pattern in order to boost unselected pillars by turning on/off USG and LSG synchronously.

Figure 35. V_{th} shift after read disturb on unselected pillars. V_{th} shift is suppressed significantly by changing the lower select gate plates into line and space patterns.

Figure 36. Schematic illustration of SONS and SONONS memory layer scheme. The tunnel film in the SONONS structure inhibits the release of trapped charges of the trapping layer. Retention and disturb behavior is improved.

Figure 37. Program and erase characteristics of SONONS based BiCS cells.

Figure 38. Data retention results of SONONS and SONS cells of BiCS flash.

Figure 39. This Besang picture shows an SEM (right) of the vertical memory cells of a 10 kb flash memory array with schematics (left) depicting the stacked memory and CMOS circuitry

Figure 40. Schematic of a PCM memory array with nanowire diodes as memory cell select devices

Figure 41. (a) Shows a generalized cross-point memory structure whose one bit cell of the array consists of a memory element and a switch element between conductive lines on top (wordline) and bottom (bitline). (b) Illustration of reading interference in an array consisting of 2×2 cells without switch elements. (c) Rectified
reading operation in an array consisting of 2 × 2 cells with switch elements

Figure 42. Matrix 3D poly Si anti-fuse diode cell schematics and electrical characteristics of programmed and unprogrammed cell

Figure 43. Matrix 3D poly Si anti-fuse diode cross section

Figure 44. Matrix 3D poly Si anti-fuse memory cross section

Figure 45. Cross section of the 512Mb PRAM with diodes as select devices

Figure 46. Process sequence for the vertical diode and the self aligned bottom electrode contact (SABEC)

Figure 47. Simulated temperature profile while writing RESET state. The temperature of the pn-junction in vertical diode is not too high to degrade the device operation

Figure 48. Expected evolution of cell structures: Cross sections of the PRAM switching elements

Figure 49. Simulated write current for melting at the phase transformation core of (a) a conventional planar PCM and (b) a confined cell structure. When the reset current is applied to the confined cell structure, melting of PCM is expected to occur between electrodes limited to isolated cell.

Figure 50. TEM images of dash-type confined cell structure. Even with 7.5nm width: The PCM was filled perfectly without voids

Figure 51. Endurance characteristic of confined PCM cell.

Figure 52. Proposed resistance switching mechanism of RRAM. The Schottky barrier is reversibly modulated by charging/discharging of vacancies

Figure 53. Left: Schematic potential energy diagram of the TaOx redox pair. ΔG is the smallest of all commonly known resistive switching material candidates indicating that both HRS and LRS are stable. Right: Schematic change of the barrier height corresponding to the redox reaction according to the model assumption

Figure 54. Cross section of fabricated 1T1R ReRAM cells based on 0.18µm CMOS process.

Figure 55. (a) Workfunction versus electrode potential of various electrode metals and appearance of the switching effect, (b) switching behaviour with Ir electrode and (c) with Pt electrode

Figure 56. (a) I-V plot of the 1T1R memory cell (cell area 0.5 x0.5 µm²) in pulse voltage sweep with 100ns pulse width, (b) Schottky plot of I-V characteristic

Figure 57. Endurance properties of ReRAM (left) and data retention of TaOx memory cells at 150°C (right)

Figure 58. Sketch of the cell cross section (top) and sample cross section of the fabricated die with enlarged TEM (right),

Figure 59. I-V characteristic of a memory cell in sweeping mode

Figure 60. Read disturb characteristics for set and reset status with -0.1 V bias forcing to reset and +0.1 V bias forcing to set, respectively. No degradation is found up to 103 seconds

Figure 61. Scaling characteristics of resistance distributions for (a) 50 nm diameter cells and (b) 20 nm diameter cells without verification loop. The inset shows an AFM image of a 20 nm diameter cell

Figure 62. Schematic diagram of a 2-stack 1D-1R cell arrangement with upper layers reversed to share the bitline. The line width of word and bitlines was 0.5µm resulting in a final cell size of 0.5x0.5µm²

Figure 63. Conceptual schematic diagram of a stacked memory with TFTs decoders as stackable peripheral circuits

Figure 64. Specifications for 43nm SLC and MLC NAND Flash
Figure 65. Lithography Resolution Limits
Figure 66. Relative Cost per Bit of Stacked SLC NAND
Figure 67. Relative Cost per Bit of Stackable Non-volatile Memories

List of Tables:

Table 1. Multi-bit NAND Flash Comparison
Table 2. Comparison of Multilayer NAND with SLC NAND
Table 3. Comparison of Multilayer NAND with MLC NAND
Table 4. Comparison of BiCS NAND with SLC and MLC NAND
Table 5. Comparison of Stacked Cross Point Array Memory with SLC and MLC NAND

Ordering:
Order Online - http://www.researchandmarkets.com/reports/776912/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

- **Product Name:** How 3D Memory Stacks Up
- **Web Address:** http://www.researchandmarkets.com/reports/776912/
- **Office Code:** SCLOPG4E

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Site License</td>
<td>USD 4999</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td>USD 5999</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

- **Title:** [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
- **First Name:** ___________________________ **Last Name:** ___________________________
- **Email Address:** * ___________________________
- **Job Title:** ___________________________
- **Organisation:** ___________________________
- **Address:** ___________________________
- **City:** ___________________________
- **Postal / Zip Code:** ___________________________
- **Country:** ___________________________
- **Phone Number:** ___________________________
- **Fax Number:** ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp