• +353-1-415-1241(GMT OFFICE HOURS)
  • 1-800-526-8630(US/CAN TOLL FREE)
  • 1-917-300-0470(EST OFFICE HOURS)
Analyzing Small Nuclear Power Reactors Product Image

Analyzing Small Nuclear Power Reactors

  • Published: May 2013
  • Region: Global
  • 170 Pages
  • Aruvian's R'search

FEATURED COMPANIES

  • Areva
  • Babcock & Wilcox
  • En+
  • General Atomics
  • Hitachi
  • INVAP
  • MORE

The global energy jigsaw is constantly and increasingly being rearranged with the nuclear power supply. Nuclear power is increasingly presenting an alternative to become the mainstay of energy needs for the new society till the time developments are further underway for cleaner energy sources. The harnessing of this energy would not have been possible without the inventing effort of Leó Szilárd in 1933. This was further presented in application in the Chicago Pile 1 which went critical on Dec 2, 1942. Thereby the first nuclear reactor was born. Therefore as a train cannot be in motion without its engine, nuclear energy needs reactor technology to constant progress in order to achieve global energy needs.

Historically, it was a general opinion that the bigger a reactor the better the energy yield. Though, the thumb rule remains in effect the changing geo political forces have ensured that new qualifiers ne added to this equation as efficiency, adaptability, control and scalability. This has led the scientific community to pursue a different direction of whether small can also be beautiful and as efficient as the big one? Thereby is it possible to answer this question READ MORE >

A. Executive Summary

B. Analysis of Nuclear Reactor Technology
B.1 Introduction
B.2 History of Nuclear Reactors
B.3 How Nuclear Power Reactors Work
B.3.1 Fission Reaction
B.3.2 Heat Generation by the Reactor Core
B.3.3 Role of the Nuclear Reactor Coolant
B.3.4 Controlling the Power Output of the Reactor
B.3.5 Generation of Electricity

C. Analysis of the Reactor Vessel

D. Analysis of the Nuclear Reactor Core

E. Overview of Small Nuclear Power Reactors
E.1 Introduction
E.2 Features of Small Nuclear Power Reactors
E.3 Reactor Classification by Coolant
E.4 Applications of Small Nuclear Power Reactors
E.5 Obstacles the Technology has to Overcome
E.6 International Collaboration

F. Supporting the Commercialization of Small Nuclear Power Reactors

G. Issues with Small Nuclear Power Reactors
G.1 Safety Issues
G.2 High Cost of Small Reactors
G.3 Technology Issues
G.4 Funding Problems

H. Small Light Water Reactors
H.1 Overview
H.2 Usage of LWRs
H.3 Reactor Design
H.4 Fuel in LWRs
H.5 Types of Light Water Reactors
H.5.1 ABV
H.5.2 CAREM
H.5.3 IRIS
H.5.4 KLT-40S
H.5.5 mPower
H.5.6 MRX
H.5.7 NHR-200
H.5.8 NP-300
H.5.9 NuScale
H.5.10 RITM-200
H.5.11 SMART
H.5.12 TRIGA
H.5.13 VBER-150, VBER-300
H.5.14 VK-300
H.5.15 VKT-12

I. High-Temperature Gas-Cooled Reactors
I.1 Overview
I.2 Types of High Temperature Gas Cooled Reactors
I.2.1 Adams Atomic Engine
I.2.2 Antares
I.2.3 China’s HTR-10
I.2.4 Energy Multiplier Module (EM2)
I.2.5 Gas Turbine Modular Helium Reactor (GT-MHR)
I.2.6 HTR-PM
I.2.7 Japan’s HTTR, GTHTR
I.2.8 Modular Transportable Small Power Nuclear Reactor (MTSPNR)
I.2.9 Pebble Bed Modular Reactor (PBMR)

J. Liquid Metal-Cooled Fast Neutron Reactors
J.1 Overview
J.2 Reactor Design
J.3 Coolant Used in the Reactor
J.3.1 Mercury
J.3.2 Sodium and NaK
J.3.3 Lead
J.4 Types of Liquid Metal-Cooled Fast Neutron Reactors
J.4.1 4S
J.4.2 ARC-100
J.4.3 BREST
J.4.4 Encapsulated Nuclear Heat-Source (ENHS)
J.4.5 Hyperion Power Module
J.4.6 Korean Fast Reactor Designs
J.4.7 Lead-Bismuth Fast Reactor (SVBR)
J.4.8 LSPR
J.4.9 PRISM
J.4.10 Rapid-L
J.4.11 STAR-LM, STAR-H2, SSTAR
J.4.12 Travelling Wave Reactor (TWR)

K. Molten Salt Reactors
K.1 Overview
K.2 Issues with Molten Salt Reactors
K.2.1 Design Issues
K.2.2 Fuel Cycle Issues
K.2.3 Political Issues
K.3 Advantages of the Reactor
K.3.1 Technological Advantages
K.3.2 Cost Efficiency & Social Advantages
K.3.3 Reprocessing Advantages
K.3.4 Thorium Fuel Cycle Advantages
K.4 Selecting the Reactor Salt
K.5 Molten Salt Reactors versus Light Water Reactors
K.6 Types of Molten Salt Reactors
K.6.1 Advanced High-Temperature Reactor (AHTR)
K.6.2 Fuji MSR
K.6.3 Liquid Fluoride Thorium Reactor

L. Aqueous Homogeneous Reactors
L.1 Overview
L.2 R&D on Aqueous Homogeneous Reactors
L.3 Types of Aqueous Homogeneous Reactors
L.3.1 ARGUS Reactor
L.3.2 Medical Isotope Production System

M. Major Industry Players
M.1 Areva SA
M.1.1 Corporate Profile
M.1.2 Business Segment Analysis
M.1.3 Financial Analysis
M.1.4 SWOT Analysis
M.2 Eskom
M.2.1 Corporate Profile
M.2.2 Business Segment Analysis
M.2.3 Financial Analysis
M.2.4 SWOT Analysis
M.3 General Electric
M.3.1 Corporate Profile
M.3.2 Business Segment Analysis
M.3.3 Financial Analysis
M.3.4 SWOT Analysis
M.4 Hitachi Ltd.
M.4.1 Corporate Profile
M.4.2 Business Segment Analysis
M.4.3 Financial Analysis
M.4.4 SWOT Analysis
M.5 Mitsubishi Heavy Industries, Ltd.
M.5.1 Corporate Profile
M.5.2 Business Segment Analysis
M.5.3 Financial Analysis
M.5.4 SWOT Analysis
M.6 Toshiba Corporation
M.6.1 Corporate Profile
M.6.2 Business Segment Analysis
M.6.3 Financial Analysis
M.6.4 SWOT Analysis
M.7 Westinghouse Electric Company
M.7.1 Corporate Profile
M.7.2 Business Segment Analysis
M.7.3 Financial Analysis
M.8 Atomenergoproekt
M.9 The Babcock & Wilcox Company
M.10 CNEA
M.11 En+ Group
M.12 General Atomics
M.13 Hyperion Power Generation
M.14 INVAP SE
M.15 KAERI
M.16 Nuclear Power Corporation of India
M.17 NuScale Power
M.18 Pebble Bed Modular Reactor (Pty) Limited
M.19 Rosatom

N. Appendix

O. Glossary of Terms

Areva
Atomenergoproekt
Babcock & Wilcox
CNEA
En+
Eskom
General Atomics
General Electric
Hitachi
Hyperion Power Generation
INVAP
KAERI
Mitsubishi Heavy Industries
Nuclear Power Corporation of India
NuScale Power
Pebble Bed Modular Reactor (Pty) Limited
Rosatom
Toshiba
Westinghouse

Note: Product cover images may vary from those shown

RELATED PRODUCTS

Our Clients

Our clients' logos