• 1-800-526-8630U.S. (TOLL FREE)
  • 1-917-300-0470EAST COAST U.S.
  • +353-1-416-8900REST OF WORLD
Recent High Efficiency Crystalline Si Solar Cell Technology and Market Forecast (2006 - 2015) - Product Image

Recent High Efficiency Crystalline Si Solar Cell Technology and Market Forecast (2006 - 2015)

  • ID: 2669533
  • January 2014
  • 336 Pages
  • SNE Research

FEATURED COMPANIES

  • Bosch
  • Fraunhofer ISE
  • Kyocera
  • Photovoltech
  • Schott
  • Suniva
  • MORE

So far, the biggest examples of high-efficiency crystalline solar cells have been Sunpower IBC (Interdigitated Back Contact) and Sanyo HIT (Hetero-junction with Intrinsic Thin-film). These cell concepts allow about 3-4% higher efficiency than typical crystalline solar cells, but require very expensive processes and wafers (n-type), resulting in more than 40 % higher prices. For this reason, those products are now unlikely to meet with an enthusiastic response in the PV (Photovoltaics) market flooded with low-cost products.

Attempting to use this market situation as a stepping stone, Chinese companies are making aggressive efforts to develop technologies allowing low-cost processes and employing wafers (p-type and multi-crystalline) such as selective emitters, MWT(Metallization Wrap-through), EWT(Emitter Wrap-through), and bifacial solar cells in an attempt to enhance the identity of 'China Brand' and increase their market shares.

When it comes to selective emitters, China Sunergy has engaged in small-scale production in their existing production line since 2007. As for MWT, Photovoltech it has produced on a small scale with their pilot line since 2003. As Suntech's pluto READ MORE >

FEATURED COMPANIES

  • Bosch
  • Fraunhofer ISE
  • Kyocera
  • Photovoltech
  • Schott
  • Suniva
  • MORE

Part 1. Trend in high-efficiency c-Si solar cell technologies

1. c- Si Solar Cell Overview
1.1. Solar Cell Overview
1.2. Solar Radiation
1.3. Mechanisms of c-Si Solar Cells

2. C-Si Solar Cell Technology Using Screen Printing Technology
2.1. Manufacturing Process
2.2. Efficiency Loss Mechanism
2.3. Technology Development Trend for High Efficiency and Low-Cost

3. Element Technologies for High Efficiency of c-Si Solar cells
3.1. Texturing
3.1.1. Laser Texturing
3.1.2. RIE Dry Etching Texturing
3.2. Doping
3.2.1. Laser Doping
3.2.2. Ion Implantation
3.3. ARC (Anti-reflective Coating)
3.4. Passivation
3.4.1. PECVD SiNx
3.4.2. ALD of Al2O3
3.5. Metallization
3.5.1. High Aspect Ratio Printing (Fine Print + Double Printing)
3.5.2. Plating
3.5.3. Ink Jet Printing

4. High-efficiency c-Si Solar Cell Technologies
4.1. BCSC (Buried Contact Solar Cell) or LGBC (Laser Grooved Buried Contact)
4.2. LFC (Laser Fired Contact)
4.3. HIT (Hetero-junction with Intrinsic Thin layer)
4.4. Back Contact Solar Cell
4.4.1. IBC (Interdigitated Back Contact)
4.4.2. EWT (Emitter Wrap Through)
4.4.3. MWT (Metal Wrap Through)
4.4.4. Module manufacturing
4.5. Passivated Emitter Solar Cell
4.5.1. MINP (Metal Insulator NP junction) Solar Cell
4.5.2. PESC (Passivated Emitter Solar Cell)
4.5.3. PERC (Passivated Emitter and Rear Cell)
4.5.4. PERL (Passivated Emitter, Rear Locally diffused cell)
4.6. Selective Emitter
4.6.1. Centrotherm (Laser)
4.6.2. Roth & Rau (Laser)
4.6.3. Schmid (Etch Back)
4.6.4. Manz (Laser)
4.6.5. Rena (Laser, LCP)
4.6.6. Applied Materials (Dopping Paste)
4.6.7. Merck (Etching Paste)
4.6.8. Cookson Electronics
4.7. Bifacial Cell
4.8. Quantum Dot Solar Cell

Part 2. Trends in High-efficiency Si Solar Cell Manufacturers & Research Institutes and Market Forecast

5. Technology Development Trends by Research Institutes
5.1. Europe
5.1.1. IMEC
5.1.1.1. Current Status
5.1.1.2. R&D Focus
5.1.1.3. Recent R&D Trend
5.1.2. Fraunhofer ISE
5.1.2.1. Current Status
5.1.2.2. Key R&D Performance
5.1.2.3. Current R&D Project
5.1.3. ECN
5.1.3.1. Current Status
5.1.3.2. R&D Focus
5.1.3.3. Current R&D Project
5.2. USA
5.2.1. NREL
5.2.1.1. Current Status
5.2.1.2. R&D Focus
5.2.1.3. Current R&D Project
5.3. Australia
5.3.1. UNSW
5.3.1.1. Current Status
5.3.1.2. Key R&D Performance
5.3.1.3. Current R&D Project

6. Technology Development Trends by Country
6.1. China
6.1.1. Suntech
6.1.2. Yingli
6.1.3. Trina Solar
6.1.4. Canadian Solar
6.1.5. JA Solar
6.1.6. China Sunergy
6.2. Japan
6.2.1. Sanyo
6.2.2. Sharp
6.2.3. Kyocera
6.2.4. Mitsubishi Elec.
6.3. Korea
6.3.1. Samsung SDI
6.3.2. LG Electronics
6.3.3. Hyundai Heavy Industry
6.3.4. Hanwha Chemical (Hanwha SolarOne)
6.3.5. Sinsung Solar Energy
6.4. Europe
6.4.1. Q-cells
6.4.2. Bosch
6.4.3. Schott
6.4.4. Solland Solar
6.4.5. Photovoltech
6.5. USA
6.5.1. Sunpower
6.5.2. Suniva
6.6. Taiwan
6.6.1. Sunrise Global Solar
6.7. Current Status of High-efficiency Solar Cells by Company (Cell&Module)

7. Efficiency of PV cells and Forecast
7.1. Champion Efficiency of Each Solar Cell Technology
7.2. Solar Cell Theoretical Efficiency Limit and Outlook for Integrated Solar Cells
7.3. ITRPV International Photovoltaics Technology Roadmap
7.3.1. Process Technology
7.3.2. Products

8. High-efficiency Crystalline Solar Cell Market Forecast
8.1. Global PV Market Forecast
8.2. High-efficiency Solar Cell Market Forecast (2006-2015)
8.2.1. Forecast by technology type (2006-2015)
8.2.2. Forecast of High-efficiency Solar Cell Supply by Substrate Type (2006-2015)
8.2.3. High-efficiency Solar Cell Module Price Forecast (2008-2015)
8.2.4. High-efficiency Solar Cell Module Sales Forecast (2008-2015)

9. Index
9.1. Figure
9.2. Table

- Bosch
- Canadian Solar
- China Sunergy
- ECN
- Fraunhofer ISE
- Hanwha Chemical (Hanwha SolarOne)
- Hyundai Heavy Industry
- IMEC
- JA Solar
- Kyocera
- LG Electronics
- Mitsubishi Elec
- NREL
- Photovoltech
- Q-cells
- Samsung SDI
- Sanyo
- Schott
- Sharp
- Sinsung Solar Energy
- Solland Solar
- Suniva
- Sunpower
- Sunrise Global Solar
- Suntech
- Trina Solar
- UNSW
- Yingli

Note: Product cover images may vary from those shown

RELATED PRODUCTS

Our Clients

Our clients' logos