# Design and Realizations of Miniaturized Fractal Microwave and RF Filters

• ID: 1208190
• Book
• 208 Pages
• John Wiley and Sons Ltd
1 of 4
An in–depth survey of the design and REALIZATIONS of miniaturized fractal microwave and RF filters

Engineers are continually searching for design methods that can satisfy the ever–increasing demand for miniaturization, accuracy, reliability, and fast development time. Design and Realizations of Miniaturized Fractal RF and Microwave Filters provides RF and microwave engineers and researchers, advanced graduate students, and wireless and telecommunication engineers with the knowledge and skills to design and realize miniaturized fractal microwave and RF filters. This book is an essential resource for the realization of portable and cellular phones, WiFi, 3G and 4G, and satellite networks.

The text focuses on the synthesis and fabrication of miniaturized fractal filters with symmetrical and asymmetrical frequency characteristics in the C, X and Ku bands, though applications to other frequency bands are considered. Readers will find helpful guidance on:

• Miniaturized filters in bilevel fashion

• Simplified methods for the synthesis of pseudo–elliptic electrical networks

• Methods for extracting coupling coefficients and external quality factors from simulations of the RF/microwave structure

• Methods for matching theoretical couplings to couplings of structure

Including studies of the real–world performance of fractal resonators and sensitivity analyses of suspended substrate realizations, this is a definitive resource for both practicing engineers and students who need timely insight on fractal resonators for compact and low–power microwave and RF applications.

Note: Product cover images may vary from those shown
2 of 4
FOREWORD.

PREFACE.

1 MICROWAVE FILTER STRUCTURES.

1.1 Background.

1.2 Cavity Filters.

1.3 Planar Filters.

1.4 Planar Filter Technology.

1.5 Active Filters.

1.6 Superconductivity or HTS Filters.

1.7 Periodic Structure Filters.

1.8 SAW Filters.

1.9 Micromachined Filters.

1.10 Summary.

References.

2 IN–LINE SYNTHESIS OF PSEUDO–ELLIPTIC FILTERS.

2.1 Introduction.

2.2 Approximation and Synthesis.

2.3 Chebyshev Filters.

2.4 Pseudo–elliptic Filters.

2.5 Prototype Synthesis Examples.

2.6 Theoretical Coupling Coefficients and External Quality Factors.

References.

3 SUSPENDED SUBSTRATE STRUCTURE.

3.1 Introduction.

3.2 Suspended Substrate Technology.

3.3 Unloaded Quality Factor of a Suspended Substrate Resonator.

3.4 Coupling Coefficients of Suspended Substrate Resonators.

3.5 Enclosure Design Considerations.

References.

4 MINIATURIZATION OF PLANAR RESONATORS USING FRACTAL ITERATIONS.

4.1 Introduction.

4.2 Miniaturization of Planar Resonators.

4.3 Fractal Iteration Applied to Planar Resonators.

4.4 Minkowski Resonators.

4.5 Hibert Resonators.

References.

5 DESIGN AND REALIZATIONS OF MEANDERED LINE FILTERS.

5.1 Introduction.

5.2 Third–order Pseudo–elliptic Filters with Transmission Zero on the Right.

5.3 Third–order Pseudo–elliptic Filters with Transmission Zero on the Left.

References.

6 DESIGN AND REALIZATIONS OF HILBERT FILTERS.

6.1 Introduction.

6.2 Design of Hilbert Filters.

6.3 Realizations and Measured Performance.

References.

7 DESIGN AND REALIZATION OF DUAL–MODE MINKOWSKI FILTERS.

7.1 Introduction.

7.2 Study of Minkowski Dual–Mode Resonators.

7.3 Design of Fourth–Order Pseudo–elliptic Filters with Two Transmission Zeros.

7.4 Realization and Measured Performance.

References.

APPENDIX 1: Equivalence Between J and K Lowpass Prototypes.

APPENDIX 2: Extraction of the Unloaded Quality Factor of Suspended Substrate Resonators.

INDEX.

Note: Product cover images may vary from those shown
3 of 4