Chemical Synthesis of Hormones, Pheromones and Other Bioregulators

Description: Many small molecules occur naturally as ‘messenger’ chemicals which regulate the behaviour and functions of microbes, plants, insects and animals. Examples include hormones, pheromones, phytoalexins, and antifeedants. These biofunctional molecules are of great interest to researchers as they help to increase our understanding of biological functions and they are useful in the development of new drugs. However, extracting them from nature can be expensive so there is great interest in devising methods of synthesizing them from simple starting materials in a laboratory.

Chemical Synthesis of Hormones, Pheromones and Other Bioregulators is an introduction to techniques and strategies for the synthesis of biofunctional small molecules. Topics include:

- biofunctional molecules and organic synthesis
- synthesis of phytohormones, phytoalexins and other biofunctional molecules of plant origin
- synthesis of insect bioregulators other than pheromones
- synthesis of pheromones
- synthesis of biofunctional molecules of microbial origin
- synthesis of marine bioregulators, medicinals and related compounds
- synthetic examination of incorrectly proposed structures of biomolecules
- conclusion science as a human endeavour

Drawing on a career of almost 50 years of researching and teaching this subject, Kenji Mori's Chemical Synthesis of Hormones, Pheromones and Other Bioregulators is a must–have textbook for students and researchers of organic synthesis and natural products, and a stimulating and inspiring account of a distinguished career in chemicals.

Contents: Preface.

Abbreviations.

1 Introduction Biofunctional Molecules and Organic Synthesis.

1.1 What are biofunctional molecules?

1.2 Developmental stages of studies on biofunctional molecules.

1.3 Small amounts of the samples are now sufficient for the elucidation of the structures of biofunctional molecules.

1.4 Why must biofunctional molecules be synthesized?

1.5 How can we synthesize biofunctional molecules?

1.5.1 What is synthesis?

1.5.2 What kind of consideration is necessary before starting a synthesis?

1.5.3 Synthon.

1.5.4 Molecular symmetry and synthesis.

1.5.5 Criteria for 'A Good Synthesis'.

1.6 What kind of knowledge and techniques are necessary to synthesize biofunctional molecules?

1.6.1 Stereochemistry and reactivity.
1.6.2 Stereochemistry and analytical methods.

References.

2 Synthesis of Phytohormones, Phytoalexins and Other Biofunctional Molecules of Plant Origin.

2.1 Phytohormones.

2.1.1 What are phytohormones?

2.1.2 Gibberellins.

2.1.3 Diterpenes related to gibberellins.

2.1.4 Abscisic acid and its relatives synthesis of optically active compounds.

2.1.5 Brassinosteroids.

2.1.6 Phyllanthrinolactone, a leaf–closing factor.

2.2 Phytoalexins.

2.2.1 What are phytoalexins?

2.2.2 Synthesis of pisatin.

2.2.3 Synthesis of 2–(4–hydroxyphenyl)naphthalene–1,8–dicarboxylic anhydride.

2.2.4 Synthesis of oryzalexins 53

2.2.5 Synthesis of phytocassanes.

2.3 Plant allelochemicals.

2.3.1 Synthesis of glycinoeclepin A.

2.3.2 Synthesis of strigolactones.

2.4 Other bioactive compounds of plant origin.

2.4.1 Synthesis of arnebinol.

2.4.2 Synthesis of magnosalicin.

2.4.3 Synthesis of hernandulcin.

2.4.4 Synthesis of O–methyl pisiferic acid.

2.4.5 Synthesis of diospyrin.

2.4.6 Synthesis of mispyric acid.

References.

3 Synthesis of Insect Bioregulators Other than Pheromones.

3.1 Insect juvenile hormones.

3.1.1 What are insect hormones?

3.1.2 Synthesis of juvabione.
3.1.3 Synthesis of the racemates of juvenile hormones.

3.1.4 Synthesis of the enantiomers of juvenile hormones.

3.2 Insect antifeedants.

3.2.1 Synthesis of polygodial.

3.2.2 Synthesis of warburganal.

3.2.3 Synthesis of 3,4-dihydroxypipropiophenone 3-α-d-glucopyranoside.

3.2.4 Synthesis of homogynolide A.

3.3 Insect repellents.

3.3.1 Synthesis of rotundial.

3.3.2 Synthesis of polyzonimine.

References.

4 Synthesis of Pheromones.

4.1 What are pheromones?

4.2 Methods for enantioselective synthesis.

4.2.1 Derivation from enantiopure natural products.

4.2.2 Enantiomer separation (optical resolution).

4.2.3 Asymmetric synthesis.

4.2.4 Determination of enantiomeric purity.

4.3 Why is it meaningful to synthesize enantiopure pheromones?

4.3.1 Determination of absolute configuration (1). trogodermal.

4.3.2 Determination of absolute configuration (2). hemiacetal pheromone of Biprorulus bibax.

4.3.3 Determination of absolute configuration (3). sesquiterpene pheromone of Eysarcoris lewisi.

4.3.4 Clarification of the relationship between absolute configuration and pheromone activity exo-brevicomin.

4.3.5 Clarification of structure (1). lineatin.

4.3.6 Clarification of structure (2). American cockroach pheromone.

4.3.7 Clarification of structure (3). acoradiene.

4.3.8 Clarification of structure (4). himachalene-type pheromone.

4.3.9 Preparation of a pure sample for bioassay (1). disparlure.

4.3.10 Preparation of a pure sample for bioassay (2). japonilure.

4.3.11 Preparation of a pure sample for bioassay (3). pheromone of the palaearctic bee, Andrena wilkella.

4.4 Chiral pheromones whose single enantiomers show bioactivity.
4.4.1 Dihydroactinidiolide, a pheromone component of the red imported fire ant.
4.4.2 Lardolure, the aggregation pheromone of the acarid mite.
4.4.3 Pheromone of the fall webworm moth.
4.4.4 Posticlude, the female sex pheromone of Orgyia postica.
4.4.5 Faranal, the trail pheromone of the pharaoh’s ant.
4.4.6 (1S,3S,7R)–3–Methyl–himachalene, the male sex pheromone of the sandfly from Jacobina, Brazil.
4.4.7 (S)–9–Methylgermacrene–B, the male sex pheromone of the sandfly from Lapinha, Brazil.
4.4.8 (1S,5R)–Frontalin, the bark beetle pheromone.
4.4.9 (1R,5S,7R)–3,4–Dehydro–exo–brevicomin and (S)–2–sec–butyl–4,5–dihyrothiazole, the pheromone components of the male mouse.
4.5 Chiral pheromones whose stereochemistry bioactivity relationships are diverse and complicated.
4.5.1 Sulcatol, the pheromone of Gnathotrichus sulcatus.
4.5.2 Sex pheromone components of female German cockroach.
4.5.3 Stigmolone, the pheromone of a myxobacterium Stigmatella aurantiaca.
4.5.4 Ipsenol and ipsdienol, pheromones of Ips bark beetles.
4.5.5 Serricornin, the cigarette beetle pheromone.
4.5.6 Stegobinone, the drugstore beetle pheromone.
4.5.7 Supellapyrone, the sex pheromone of the brownbanded cockroach.
4.5.8 Olean, the sex pheromone of the olive fruit fly.
4.5.9 13,23–Dimethylpentatriacontane as the sex pheromone of a tsetse fly.
4.6 Significance of chirality in pheromone science.
References.
5 Synthesis of Biofunctional Molecules of Microbial Origin.
5.1 Microbial hormones.
5.1.1 A–factor.
5.1.2 Sch II and relatives, the fruiting–inducing cerebrosides.
5.1.3 Basidifferquinone C.
5.1.4 Sclerosporin.
5.1.5 Sporogen–AO.
5.1.6 Differolide.
5.2 Antibiotics.
5.2.1 Ascochlorin.
5.2.2 Ascofuranone.
5.2.3 Trichostatin A.
5.2.4 Koninginin A.
5.2.5 Cytoxzone.
5.2.6 Neuchromenin.
5.2.7 Nocardione A and B.
5.2.8 Cytosporone E.

5.3 Other bioactive metabolites of micro–organisms.

5.3.1 Monocerin.
5.3.2 Pinthunamide.

References.

6 Synthesis of Marine Bioregulators, Medicinals and Related Compounds.

6.1 Marine natural products of ecological importance such as antifeedants.

6.1.1 Stypoldione.
6.1.2 meso–and (±)–Limatulone.
6.1.3 Testudinariol A.
6.1.4 Stellettadine A.

6.2 Marine natural products of medicinal interest.

6.2.1 Punaglandin 4.
6.2.2 Bifurcarenone.
6.2.3 Elenic acid.
6.2.4 Symbioramide.
6.2.5 Penazetidine A.
6.2.6 Penaresidin A and B.
6.2.7 Sulfobacin A, B and flavocristamide A.
6.2.8 Plakoside A.

6.3 Glycosphingolipids and sphingolipids of medical interest.

6.3.1 Esterified cerebroside of human and pig epidermis.
6.3.2 Ceramide B, 6-hydroxylated ceramide in human epidermis.
6.3.3 KRN7000, a glycosphingolipid that stimulates natural killer T cell.
6.3.4 Analogs of KRN7000 prepared in 2003–2006.
6.3.5 Cyclitol, carbasugar and modified d-galactose analogs of KRN7000: RCAI–56 and RCAI–61.
References.

7 Synthetic Examination of Incorrectly Proposed Structures of Biomolecules.

7.1 Origin of incorrect or obscure structures.

7.2 Structure fabrications of historical interest.

7.2.1 Kogl's auxin–a and –b, the plant–growth promoters.

7.2.2 Chemical communication system of the green flagellate, Chlamydomonas.

7.2.3 Early fabrications of the structures of insect pheromones.

7.3 Incorrect structures resulting from inappropriate use of purification or analytical methods.

7.4 Inappropriate structural proposal caused by problems in bioassay methods.

7.4.1 Blattellastanoside A and B, putative components of the aggregation pheromone of the German cockroach.

7.4.2 2,2,4,4–Tetramethyl–N,N–bis(2,6–dimethylphenyl)cyclobutane–1,3–diimine as a putative antifeedant against the cotton boll weevil.

7.5 Human errors are inevitable in chemistry, too.

References.

8 Conclusion Science as a Human Endeavor.

8.1 Small molecules are also beautiful.

8.2 Continuous efforts may bring something meaningful.

8.3 Can a scientist eventually have a hope in the future?

Acknowledgements.

Index.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Chemical Synthesis of Hormones, Pheromones and Other Bioregulators
Web Address: http://www.researchandmarkets.com/reports/1511773/
Office Code: SC

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back)</td>
<td>USD 143 + USD 31 Shipping/Handling</td>
</tr>
<tr>
<td>Hard Copy (Paper back)</td>
<td>USD 97 + USD 31 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World