Laboratory Manual of Biomathematics

  • ID: 1767252
  • Book
  • 192 Pages
  • Elsevier Science and Technology
1 of 4

Laboratory Manual of Biomathematics is a companion to the textbook An Invitation to Biomathematics. This laboratory manual expertly aids students who wish to gain a deeper understanding of solving biological issues with computer programs.

It provides hands-on exploration of model development, model validation, and model refinement, enabling students to truly experience advancements made in biology by mathematical models. Each of the projects offered can be used as individual module in traditional biology or mathematics courses such as calculus, ordinary differential equations, elementary probability, statistics, and genetics. Biological topics include: Ecology, Toxicology, Microbiology, Epidemiology, Genetics, Biostatistics, Physiology, Cell Biology, and Molecular Biology .

Mathematical topics include Discrete and continuous dynamical systems, difference equations, differential equations, probability distributions, statistics, data transformation, risk function, statistics, approximate entropy, periodic components, and pulse-detection algorithms. It includes more than 120 exercises derived from ongoing research studies.

This text is designed for courses in mathematical biology, undergraduate biology majors, as well as general mathematics. The reader is not expected to have any extensive background in either math or biology.

  • Can be used as a computer lab component of a course in biomathematics or as homework projects for independent student work
  • Biological topics include: Ecology, Toxicology, Microbiology, Epidemiology, Genetics, Biostatistics, Physiology, Cell Biology, and Molecular Biology
  • Mathematical topics include: Discrete and continuous dynamical systems, difference equations, differential equations, probability distributions, statistics, data transformation, risk function, statistics, approximate entropy, periodic components, and pulse-detection algorithms
  • Includes more than 120 exercises derived from ongoing research studies
READ MORE
Note: Product cover images may vary from those shown
2 of 4
Preface

Laboratory 1 Exploring Berkeley Madonna in the Context of Single-Species Population Dynamics


Laboratory 2 Logistic Models of Single-Species Population Dynamics, Equilibrium States, and Long-Term Behavior


Laboratory 3 Physiological Mechanisms of Drug Elimination from the Bloodstream and Optimal Drug Intake Regimens


Laboratory 4 Epidemic Models


Laboratory 5 Predator-Prey Models


Laboratory 6 Selection in Genetics: The Effect of A Maladaptive or Lethal Gene


Laboratory 7 Quantitative Genetics and Statistics


Laboratory 8 Blood Glucose Fluctuation Characteristics in Type I versus Type II Diabetes Mellitus


Laboratory 9 Using Heartbeat Characteristics and Patterns to Predict Sepsis in Neonates


Laboratory 10 Hormone Pulsatility in Reproductive Endocrinology


Laboratory 11 Endocrine Oscillators: Modeling and Analysis of the Growth Hormone Network


Laboratory 12 Chemical Perturbation on the Operations of Circadian Clocks
Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Robeva, Raina
Raina Robeva was born in Sofia, Bulgaria. She has a PhD in Mathematics from the University of Virginia and has led multiple NSF-funded curriculum development projects at the interface of mathematics and biology. She is the lead author of the textbook An Invitation to Biomathematics (2008) and the lead editor of the volume Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models (2013), both published by Academic Press. Robeva is the founding Chief Editor of the research journal Frontiers in Systems Biology. She is a professor of Mathematical Sciences at Sweet Briar College and lives in Charlottesville, Virginia.
Kirkwood, James R.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll