Analyzing Robotics in Healthcare

Description: Robots have emerged as the latest tool of choice for the healthcare industry. From being used to perform minimally invasive surgeries to performing dental surgeries, robotics has become an integral part of the healthcare industry.

There are many applications of robotics in the healthcare industry, ranging from general surgery to cardiac surgery to even gastrointestinal surgeries. The uses of medical robots are many and wide, and these are being incorporated into daily usage in the healthcare industry by doctors and researchers alike.

There are many types of functions that medical robots are able to perform. From lending support to a surgeon's hands to actually performing the surgery, there is no limit to the range of functions that these medical robots are capable of.

This research analyzed the robotic surgery industry through its research report Analyzing Robotics in Healthcare. This research offering is a cutting edge compilation of the many uses of medical robots.

The report begins with an analysis of the basics of robotics and a brief profile of the global robots industry, and then moves on to an introduction to robotics in healthcare and medicine.

In this section we analyze how robotics are used in healthcare and medicine, we define robotics in healthcare, and then go on to analyze the various procedures that robots can carry out in healthcare. We also analyze the advantages and disadvantages of robotic surgery.

The report analyzes the major areas in healthcare where robotics is used, including general surgery, cardiothoracic surgery, cardiology, gastrointestinal surgery, gynecology, and many others.

The report looks at the factors impacting healthcare robotics such as a rapidly growing global population, epidemiological factors, ethical challenges, social trends, and technological considerations for healthcare robotics amongst others. Why the healthcare sector needs robotics is also analyzed.

Applications of robotics in healthcare are analyzed in details in section H of the report. Here we analyze the major application areas, the role of robotics in assisted preventive therapies and diagnosis, the role of robotics in assistive technology, robotics in supporting professional care, robotics in rehabilitation treatment, and much more.

Many of the application areas of robotics are analyzed separately in the report including robotized surgery, intelligent prosthetics, robotized motor coordination analysis and therapy, robotics for cardiac surgery, robotics in computer integrated surgery, etc.

We also analyze how the robotics technology is used in surgery and therapy through augmenting devices and systems, cooperatively controlled tools, teleoperated tools, autonomous tool, and many others.

Enabling technologies and robotics in healthcare are also analyzed such as advanced sensory systems, advanced human machine interfacing, and others. The incorporation of haptic sensation to robotic systems for surgery and therapy are also looked at.

The report takes a look at the future of medical robotics and analyzes the major industry players such as Intuitive Surgical, Titan Medical, Toshiba, and others.

Contents: A. Executive Summary
B. Introduction to Robotics
B.1 What is Robotics?
B.2 History of Robots
B.3 Power Sources
B.4 Controlling a Robot
B.5 Robotics R&D

C. Brief Profile: Global Robots Industry
C.1 Industry Definition
C.2 Industry Statistics
C.3 Industry Value & Volume
C.4 Industry Segmentation

D. Robotics in Healthcare and Medicine
D.1 How is Robotics Used in Healthcare and Medicine
D.2 Defining Robotics in Healthcare
D.3 Minimally Invasive Procedures
D.4 Image-Based Procedures
D.5 Interaction Modes
D.6 Limitations of Robotic Surgery
D.7 Technical and Implementation Challenges
D.8 Advantages & Disadvantages of Robotic Surgery

E. Major Areas in Healthcare where Robotics are Used
E.1 General Surgery
E.2 Cardiothoracic Surgery
E.3 Cardiology and Electrophysiology
E.4 Gastrointestinal Surgery
E.5 Gynecology
E.6 Neurosurgery
E.7 Orthopedics
E.8 Pediatrics
E.9 Radiosurgery
E.10 Urology
E.11 Vascular Surgery

F. Factors Impacting Healthcare Robotics
F.1 Growing Population
F.2 Epidemiological Factors
F.3 Rural vs. Urban Population Developments
F.4 Economic Growth
F.5 Economic Impacts on Markets
F.6 International Developments
F.7 Ethical Challenges
F.8 Social Trends
F.9 Technological Acceptance
F.10 New Innovations in Technology
F.11 Technological Trends & Challenges
F.12 Scarcity of Resources
F.13 Waste Generation
F.14 Environmental Security
F.15 Legal Factors and Regulations
F.16 Government Support
F.17 Political Agenda

G. Why the Healthcare Sector Need Robotics
G.1 Better and Safer Treatments
G.2 Increased Efficiency for Healthcare Professionals
G.3 Good Investment for Hospitals
G.4 Other Options

H. Applications of Robotics in Healthcare
H.1 Overview
H.2 Major Application Areas
H.3 Role of Robotics in Assisted Preventive Therapies and Diagnosis
H.3.1 Overview
H.3.2 Robotized Analysis of Motion and Coordination
H.3.3 Intelligent Fitness Systems
H.3.4 Tele-diagnostic and Monitoring Robotic Systems
H.3.5 Smart Medical Capsules
H.3.6 Summing Up
H.4 Role of Robotics in Assistive Technology
H.4.1 Overview
H.4.2 Robotized Systems Supporting Manipulation
H.4.3 Robotized Systems Supporting Mobility
H.4.4 Summing Up
H.5 Role of Robotics in Supporting Professional Care
H.5.1 Overview
H.5.2 Logistical Robotized Aid for Nurses
H.5.3 Robotized Patient Monitoring Systems
H.5.4 Robotized Physical Tasks while in Care
H.5.5 Robotized Paramedic Tasks
H.5.6 Summing Up
H.6 Role of Robotics in Rehabilitation Treatment
H.6.1 Overview
H.6.2 Robot Assisted Motor-Coordination Therapy
H.6.3 Robot Assisted Physical Training Therapy
H.6.4 Robot Assisted Mental, Cognitive and Social Therapy
H.6.5 Summing Up
H.7 Role of Robotics in Medical Interventions
H.7.1 Overview
H.7.2 Robot Assisted Micro Surgery
H.7.3 Robotized Surgery Assistance
H.7.4 Robotized Precision Surgery
H.7.5 Robotic Devices for Minimal Invasive Surgery
H.7.6 Medical Micro and Nanobots
H.7.7 Remote Surgery
H.7.8 Robotized Assistance for Small Medical Interventions
H.7.9 Summing Up

I. Analysis of Robotized Surgery
I.1 History of Robotized Surgery
I.2 Challenges Facing the Segment & Factors Driving Growth
I.2.1 Challenges
I.2.1.1 Technological Capabilities
I.2.1.2 Legislation
I.2.1.3 Economic Considerations
I.2.2 Factors Driving Growth
I.2.2.1 Technological Developments
I.2.2.2 Social Considerations
I.3 Innovation in the Sector
I.3.1 Research Organizations
I.3.2 System Manufacturers
I.3.3 Component Suppliers
I.3.4 Hospitals
I.3.5 Government Agencies
I.3.6 Insurance Companies
I.4 Future of Robotized Surgeries
I.5 Conclusion

J. Analysis of Intelligent Prosthetics
J.1 History of Intelligent Prosthetics
J.1.1 Upper Limb Prosthesis
J.1.2 Lower Limb Prosthesis
J.2 Challenges Facing the Segment & Factors Driving Growth
J.2.1 Challenges
J.2.1.1 Technological Capabilities
J.2.1.2 Social Issues
J.2.1.3 Economic Considerations
J.2.1.4 Legal and Ethical Issues
J.2.2 Factors Driving Growth
J.2.2.1 Technological Developments
J.2.2.2 Social Considerations
J.2.2.3 Economical Considerations
J.3 Innovation in the Sector
J.3.1 Government Agencies
J.3.2 Financers
J.3.3 Healthcare Providers
J.3.4 Research Agencies
J.3.5 Manufacturers and Suppliers
J.3.6 End Users
J.4 Future of Intelligent Prosthetics
J.5 Conclusion

K. Analysis of Robotized Motor Coordination Analysis and Therapy
K.1 History of Robotized Motor Coordination Analysis and Therapy
K.1.1 Robotized Therapy of Motor Coordination
K.1.2 Robotized Analysis of Motor Coordination
K.2 Challenges Facing the Segment & Factors Driving Growth
K.2.1 Challenges
K.2.1.1 Technological Capabilities
K.2.1.2 Social Issues
K.2.1.3 Economic Considerations
K.2.1.4 Legal and Ethical Issues
K.2.2 Factors Driving Growth
K.2.2.1 Technological Developments
K.2.2.2 Social Considerations
K.2.2.3 Economical Considerations
K.3 Innovation in the Sector
K.3.1 Government Agencies
K.3.2 Financers
K.3.3 Healthcare Providers
K.3.4 Research Agencies
K.3.5 Manufacturers
K.3.6 End Users
K.4 Future of Robotized Motor Coordination Analysis and Therapy
K.5 Conclusion

L. Robotics for Cardiac Surgery
L.1 Introduction
L.2 History of Robotics Used for Cardiac Surgery
L.2.1 Direct Vision and Mini-Incisions
L.2.2 Video-Assisted and Micro-Incisions
L.2.3 Video-Directed and Port Incisions
L.2.4 Video-Directed and Robotic Instruments
L.3 Clinical Applications and Patient Selection
L.4 Robotic Operative Techniques
L.4.1 Mitral Valve Surgery
L.4.2 Coronary Artery Bypass Surgery
L.5 Clinical Experience with Robotics in Cardiac Surgery
L.6 Limitations Posed by Robotics in Cardiac Surgery
L.7 Conclusion

M. Robotics Technology for Surgery and Therapy
M.1 Overview
M.2 Augmenting Devices and Systems
M.2.1 Hand-held Tools
M.2.1.1 Master-slave Combined Instruments
M.2.1.2 Instruments for Reducing Hand Tremors
M.2.1.3 Instruments for Increased Dexterity and Navigation Capability
M.2.1.4 Instruments for Measurement Purposes
M.2.2 Cooperatively-controlled Tools
M.2.2.1 Force Controlled Devices
M.2.2 Passive Devices
M.2.3 Teleoperated Tools
M.2.3.1 Sensorized Tools for Incorporating Haptic Interaction
M.2.3.2 Tools for Increased Dexterity in Teleoperation
M.2.4 Autonomous Tools
M.2.4.1 Autonomous Instruments
M.2.4.2 Autonomous Systems
M.3 Supporting Devices and Systems
M.3.1 Positioning/Stabilization Purposes
M.3.1.1 Positioning Stands for Tools
M.3.1.2 Camera Positioners/Stabilizers
M.3.1.3 Ultrasound Probe Positioner
M.3.1.4 Stabilizers for Surgeon’s Hand
M.3.2 Increasing Device Dexterity or Autonomy
M.3.2.1 Dexterous Endoscopes
M.3.2.2 Autonomous Endoscopes

N. Robotics in Computer-Integrated Surgery
N.1 What is Computer Integrated Surgery?
N.2 Surgical CAD/CAM
N.3 Surgical Assistants
N.4 Technology and Design Issues in Surgical Robotics
N.4.1 Design Issues
N.4.2 Remote Center-of-Motion Kinematic Architectures
N.4.3 Stiffness, Drive Philosophy, and Redundancy
N.4.4 Human–Machine Interfaces
N.5 Surgical CAD/CAM Systems
N.5.1 Robotic Orthopedic Surgery
N.5.2 Robotically Assisted Percutaneous Therapy
N.5.3 Other Examples of Surgical CAD/CAM
N.6 Surgical Assistant Systems
N.6.1 Surgeon Extenders
N.6.2 Auxiliary Surgical Supports
N.6.3 Remote Surgery Systems
N.7 Conclusion

O. Robotics and Enabling Technologies in Healthcare
O.1 Introduction
O.2 Advanced Sensory Systems
O.2.1 Overview
O.2.2 Biomedical Imaging
O.2.3 Positioning
O.2.4 Biomedical Sensors
O.2.5 Biofeedback Mechanisms
O.2.6 Ambient Intelligence
O.3 Advanced Human-machine Interfacing
O.3.1 Overview
O.3.2 Vision Sensory Systems
O.3.3 Advanced Tactile Sensors
O.3.4 Input Concepts
O.3.5 System Response
O.3.6 User Friendly Interface Concepts
O.4 Mobile Energy Systems
O.4.1 Overview
O.4.2 Advanced Mobile Energy Storage
O.4.3 Micro Mobile Energy Generation
O.4.4 Energy Efficient Robotic Systems
O.4.5 Wireless Energy Transfer
O.5 Control Systems for Complex Mechanical Movement
O.5.1 Overview
O.5.2 Advanced Software for Robotics
O.5.3 Shared Control
O.5.4 Adaptive Control
O.6 Role in Mechatronics
O.6.1 Overview
O.6.2 High Performance Actuators
O.6.3 Artificial Muscles
O.6.4 Grippers
O.6.5 Locomotion of Small Internal Devices and Micro Grippers
O.7 Role in Medical Therapies and Human Behavior
O.7.1 Overview
O.7.2 Human perception to robots
O.7.3 Systems and Safety
O.7.4 Human Movement
O.7.5 Understanding Therapeutic Mechanism
O.7.6 Research Protocols
O.8 Conclusion

P. Incorporating Haptic Sensation to Robotic Systems for Surgery/Therapy
P.1 Introduction
P.2 Haptic User Interface Technology
P.2.1 PHANToM
P.2.2 Freedom-6S
P.2.3 Laparoscopic Impulse Engine and Surgical Workstation
P.2.4 Xitact IHP
P.3 Haptic Surgical Teleoperation

Q. Top Medical Robots in the Industry
Q.1 Aethon TUG
Q.2 Anybots
Q.3 ARTAS System
Q.4 Balance Training Assist
Q.5 Bestic
Q.6 Cody
Q.7 CosmoBot
Q.8 Microbots
Q.9 RP-VITA
Q.10 Swisslog RoboCourier
Q.11 Vasteras Giraff

R. Future of Medical Robotics

S. Major Players
S.1 Accuray Inc.
S.2 Aethon Inc
S.3 Anthrotronix
S.4 Cardiogenesis Corporation
S.5 Corindus Inc
S.6 Cyberdyne Inc
S.7 Hansen Medical
S.8 Hitachi Medical Corporation
S.9 Intuitive Surgical
S.10 iRobot Corporation
S.11 MAKO Surgical Corporation
S.12 Otto Bock
S.13 Restoration Robotics
S.14 Stereotaxis, Inc
S.15 Swisslog Holding Ltd
S.16 Titan Medical Inc.
S.17 Toshiba Corporation
S.18 Touch Bionics
S.19 Vecna Technologies

T. Appendix

U. Glossary of Terms
List of Figures

Figure 1: Market Value of Global Robots Industry (USD Billion) 2009-2013
Figure 2: Market Volume of Global Robots Industry (Thousand Units) 2009-2013
Figure 3: Global Robots Industry, Industry Segmentation (% Share), 2013
Figure 4: Industry Segmentation on a Global Basis (% Share) 2013
Figure 5: Strengths & Limitations of Robots versus Humans
Figure 6: Information Flow in Robotic Systems for Minimally Invasive Surgery
Figure 7: Minimally Invasive Telesurgery Robots
Figure 8: Robotics for Healthcare Value Chain
Figure 9: Innovation Areas for Robotics in Healthcare
Figure 10: I-Bot Wheelchair
Figure 11: RI-MAN is Designed for Lifting and Carrying Humans
Figure 12: PERROB
Figure 13: RoboDoc surgical system uses Computer Tomography to obtain structural information of the surgical object pre-operatively. The OrthoDoc allows the surgeon to construct a pre-operative bone-milling procedure.
Figure 14: Micro Medical Robot aims to minimize the need for surgery, this surgical micro robot can affix diverse kind of medical devices such as micro camera, micro manipulators, various sensors and drug delivery injectors.
Figure 15: Milestones in the Development of Surgical Robots
Figure 16: Milestones in the Development of Intelligent Prosthetics
Figure 17: Milestones in the Development of Robotized Motor Coordination Analysis and Therapy
Figure 18: da Vinci™ Robotic Telemanipulation System: Operative Console where the Surgeon is Seated
Figure 19: da Vinci™ Robotic Telemanipulation System: the Instrument Cart
Figure 20: da Vinci™ Robotic Telemanipulation System: End-Effector Arms Demonstrating all Axis of Motion
Figure 21: Zeus™ Surgical Console: Two-Dimensional Monitor the Surgeon Uses
Figure 22: Operative view through the working port. Note the excellent view of the mitral valve apparatus with the left atrial retractor in place seen exiting through the chest wall.
Figure 23: Typical da Vinci™ mitral valve repair: the P2 segment of the posterior leaflet is being resected by robotic microscissors. The annulus is reduced and both P1 and P3 are approximated.
Figure 24: Coronary stabilizer placed endoscopically as used for TECAB. Note the irrigator that provides a clear view for creation of the anastomosis.
Figure 25: Diagram of the Zeus System from Intuitive Surgical, Inc.
Figure 26: Information Flow of CIS Systems
Figure 27: ROBODOC System for Hip and Knee Surgery
Figure 28: ACROBAT Hand-Guided Knee Replacement Robot
Figure 29: Two Parallel Link Robots that Attach Directly to the Patient’s Bone. (a) System used for Hip Surgery. (b) System intended for Spine Surgery
Figure 30: Modular Elements of a Robotic System
Figure 31: PHANTOM Premium 1.5/6DOF of Sensable Technologies Inc
Figure 32: Freedom-6S of MPB Technologies Inc
Figure 33: Laparoscopic Surgical Workstation of Immersion Corporation
Figure 34: Xitact IHP of Xitact SA
Figure 35: Aethon TUG
Figure 36: Anybot
Figure 37: Balance Training Assist
Figure 38: Bestic
Figure 39: Cody
Figure 40: CosmoBot
Figure 41: Microbots at Work
Figure 42: RP-VITA
Figure 43: Swisslog RoboCourier
Figure 44: Vasteras Giraff
Figure 45: i-Limb Ultra
Figure 46: Personal & Service Robots Market
Figure 47: Home Care Robots
Figure 48: Humanoid Kits
Figure 49: Entertainment Robots

List of Tables
Table 1: Market Value of Global Robots Industry (USD Billion) 2009-2013
Table 2: Market Volume of Global Robots Industry (Thousand Units) 2009-2013
Table 3: Global Robots Industry, Industry Segmentation (% Share), 2013
Table 4: Industry Segmentation on a Global Basis (% Share) 2013
Table 5: Sampler of Surgical CAD/CAM Systems
Table 6: Sampler of Surgical Assistant Systems

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2037415/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Analyzing Robotics in Healthcare
Web Address: http://www.researchandmarkets.com/reports/2037415/
Office Code: SC

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single User</td>
<td>USD 900</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF) -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site License</td>
<td>USD 1200</td>
<td></td>
</tr>
<tr>
<td>Hard Copy</td>
<td></td>
<td>USD 1500 + USD 61 Shipping/Handling</td>
</tr>
<tr>
<td>CD-ROM</td>
<td></td>
<td>USD 1500 + USD 61 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) -</td>
<td></td>
<td>USD 1500</td>
</tr>
<tr>
<td>Enterprisewide</td>
<td>USD 1500</td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World