Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area flat displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fit both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the field (through the first part detailing the basic aspects of the technique).

This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.

Contents:

Foreword V
Preface XVII
Introduction XXI
List of Contributors XXXIII
Part One Introduction to ALD 1

1 Theoretical Modeling of ALD Processes 3
 Charles B. Musgrave

1.1 Introduction 3
1.2 Overview of Atomistic Simulations 3
1.3 Calculation of Properties Using Quantum Simulations 10
1.4 Prediction of ALD Chemical Mechanisms 13
1.5 Example of a Calculated ALD Mechanism: ALD of Al2O3 Using TMA and Water 16

References 20

2 Step Coverage in ALD 23
 Sovan Kumar Panda and Hyunjung Shin

2.1 Introduction 23
2.2 Growth Techniques 24
2.3 Step Coverage Models in ALD 28
2.4 Experimental Verifications of Step Coverage Models 34
2.5 Summary 38

References 38

3 Precursors for ALD Processes 41
 Matti Putkonen
3.1 Introduction 41
3.2 General Requirements for ALD Precursors 42
3.3 Metallic Precursors for ALD 42
3.4 Nonmetal Precursors for ALD 49
3.5 Conclusions 50

References 51

4 Sol Gel Chemistry and Atomic Layer Deposition 61
 Guylhaine Clavel, Catherine Marichy, and Nicola Pinna
4.1 Aqueous and Nonaqueous Sol Gel in Solution 61
4.2 Sol Gel and ALD: An Overview 63
4.3 Mechanistic and In Situ Studies 70

References 76

5 Molecular Layer Deposition of Hybrid Organic Inorganic Films 83
 Steven M. George, B. Yoon, Robert A. Hall, Aziz I. Abdulagatov, Zachary M. Gibbs, Younghee Lee, Dragos Seghete, and Byoung H. Lee
5.1 Introduction 83
5.2 General Issues for MLD of Hybrid Organic Inorganic Films 85
5.3 MLD Using Trimethylaluminum and Ethylene Glycol in an AB Process 87
5.4 Expansion to an ABC Process Using Heterobifunctional and Ring-Opening Precursors 89
5.5 Use of a Homotrifunctional Precursor to Promote Cross-Linking in an AB Process 93
5.6 Use of a Heterobifunctional Precursor in an ABC Process 96
5.7 MLD of Hybrid Alumina Siloxane Films Using an ABCD Process 99
5.8 Future Prospects for MLD of Hybrid Organic Inorganic Films 103

References 106

6 Low-Temperature Atomic Layer Deposition 109
 Jens Meyer and Thomas Riedl
6.1 Introduction 109
6.2 Challenges of LT-ALD 110
6.3 Materials and Processes 113
6.4 Toward Novel LT-ALD Processes 115
6.5 Thin Film Gas Diffusion Barriers 117
6.6 Encapsulation of Organic Electronics 119
6.7 Conclusions 125
References 125

7 Plasma Atomic Layer Deposition 131
Erwin Kessels, Harald Profijt, Stephen Potts, and Richard van de Sanden

7.1 Introduction 131

7.2 Plasma Basics 134

7.3 Plasma ALD Configurations 139

7.4 Merits of Plasma ALD 142

7.5 Challenges for Plasma ALD 149

7.6 Concluding Remarks and Outlook 153

References 154

Part Two Nanostructures by ALD 159

8 Atomic Layer Deposition for Microelectronic Applications 161
Cheol Seong Hwang

8.1 Introduction 161

8.2 ALD Layers for Memory Devices 162

8.3 ALD for Logic Devices 180

8.4 Concluding Remarks 187

References 188

9 Nanopatterning by Area–Selective Atomic Layer Deposition 193
Han–Bo–Ram Lee and Stacey F. Bent

9.1 Concept of Area–Selective Atomic Layer Deposition 193

9.2 Change of Surface Properties 195

9.3 Patterning 205

9.4 Applications of AS–ALD 215

9.5 Current Challenges 216

References 218

10 Coatings on High Aspect Ratio Structures 227
Jeffrey W. Elam

10.1 Introduction 227

10.2 Models and Analysis 228

10.3 Characterization Methods for ALD Coatings in High Aspect Ratio Structures 230

10.4 Examples of ALD in High Aspect Ratio Structures 232

10.5 Nonideal Behavior during ALD in High Aspect Ratios 242

10.6 Conclusions and Future Outlook 245
11 Coatings of Nanoparticles and Nanowires 251
Hong Jin Fan and Kornelius Nielsch

11.1 ALD on Nanoparticles 251

11.2 Vapor Liquid Solid Growth of Nanowires by ALD 254

11.3 Atomic Layer Epitaxy on Nanowires 256

11.4 ALD on Semiconductor NWs for Surface Passivation 257

11.5 ALD-Assisted Formation of Nanopeapods 258

11.6 Photocorrosion of Semiconductor Nanowires Capped by ALD Shell 260

11.7 Interface Reaction of Nanowires with ALD Shell 261

11.8 ALD ZnO on NWs/Tubes as Seed Layer for Growth of Hyperbranch 265

11.9 Conclusions 267

References 268

12 Atomic Layer Deposition on Soft Materials 271
Gregory N. Parsons

12.1 Introduction 271

12.2 ALD on Polymers for Passivation, Encapsulation, and Surface Modification 274

12.3 ALD for Bulk Modification of Natural and Synthetic Polymers and Molecules 279

12.4 ALD for Polymer Sacrificial Templating: Membranes, Fibers, and Biological and Optical Structures 280

12.5 ALD Nucleation on Patterned and Planar SAMs and Surface Oligomers 283

12.6 Reactions during Al2O3 ALD on Representative Polymer Materials 286

12.7 Summary 291

References 292

13 Application of ALD to Biomaterials and Biocompatible Coatings 301
Mato Knez

13.1 Application of ALD to Biomaterials 302

13.2 Biocompatible Coatings 317

13.3 Summary 320

References 321

14 Coating of Carbon Nanotubes 327
Catherine Marichy, Andrea Pucci, Marc-Georg Willinger, and Nicola Pinna

14.1 Introduction 327

14.2 Purification and Surface Functionalization of Carbon Nanotubes 328
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit

http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Atomic Layer Deposition of Nanostructured Materials
Web Address: http://www.researchandmarkets.com/reports/2095146/
Office Code: SC

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): | USD 168 + USD 31 Shipping/Handling |

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

| Title: Mr | Mrs | Dr | Miss | Ms | Prof |

First Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World