Computational Mesomechanics of Composites. Numerical Analysis of the Effect of Microstructures of Composites of Strength and Damage Resistance

  • ID: 2170458
  • Book
  • 294 Pages
  • John Wiley and Sons Ltd
1 of 4
Mechanical properties of composite materials can be improved by tailoring their microstructures. The mesomechanics of materials considers teh effect of microstructures on the materials′ properties, seeking to bridge the gap between micro–and macroscale models of materials. Mesomechanics represents an approach to assessing existing and improving new materials, based on the analysis of interrelations between macroscale properties of materials, microscale physical mechanisms of deformation and damage, and the interaction effects between many microstructural elements.

The book presents the concept and methods for the computational analysis of interrelationships between mechanical properties (e.g. strength, damage resistance, and stiffness) and microstructures of composite materials. The methods of mesomechanics of composites are reviewed and applied to the modeling of the mechanical behavior of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure–mechanical properties relationships of particle–reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.

The book is aimed at scientists and professionals working in the areas of the mechanics of materials and materials science as well at graduate and postgraduate students.

Note: Product cover images may vary from those shown
2 of 4

1 Composites.

1.1. Classification and types of composites.

1.2. Deformation, damage and fracture of composites: micromechanisms and roles of phases.

2. Mesoscale level in the mechanics of materials.

2.1. On the definitions of scale levels: Micro– and mesomechanics.

2.2. Size effects.

2.3. Biocomposites.

2.4. On some concepts of the improvement of material properties.

2.5. Physical mesomechanics of materials.

2.6 Topological and statistical description of microstructures of composites.

3. Damage and failure of materials: Concepts and methods of modeling.

3.1. Fracture mechanics: Basic concepts.

3.2. Statistical theories of strength.

3.3. Damage mechanics.

3.4 Numerical modeling of damage and fracture.

4. Microstructure–strength relationships of composites: Concepts and methods of analysis.

4.1. Interaction between elements of microstructures: physical and mechanical models.

4.2. Multi–scale modeling of materials and homogenization.

4.3. Analytical estimations and bounds of overall elastic properties of composites.

4.4. Computational models of microstructures and strength of composites.

5. Computational experiments in the mechanics of materials: concepts and tools.

5.1. Concept of computational experiments in the mechanics of materials.

5.2. Input data for the simulations: Determination of material properties.

5.3. Program codes for the automatic generation of 3D microstructural models of materials.

6. Numerical mesomechanical experiments: Analysis of the effect of microstructure of materials on the deformation and damage resistance by virtual testing.

6.1 Finite element models of composite microstructures.

6.2 Material properties used in the simulations.

6.3 Damage modeling in composites with the User Defined Fields.

6.4 Stability and reproducibility of the simulations.

6.5 Effect of the amount and the volume content of particles on the deformation and damage in the composite.

6.6 Effect of particle clustering and the gradient distribution of particles.

6.7 Effect of the variations of particle sizes on the damage evolution.

6.8 Ranking of microstructures and the effect of gradient orientation.

7. Graded particle–reinforced composites: Effect of the parameters of graded microstructures on the deformation and damage.

7.1 Damage evolution in graded composites and the effect of the degree of gradient.

7.2 Bilayer model of a graded composite.

7.3 Effect of the shape and orientation of whiskers and elongated particles on the strength and damage evolution: non–graded composites.

7.4 Effect of the shape and orientation of elongated particles on the strength and damage evolution: the case of graded composite materials.

7.5 Effect of statistical variations of local strengths of reinforcing particles and the distribution of the particle sizes.

7.6 Combined Reuss/Voigt model and its application to the estimation of stiffness of graded materials.

8. Particle clustering in composites: Effect of clustering on the mechanical behavior and damage evolution.

8.1. Finite element modeling of the effect of clustering of particles on the damage evolution.

8.2. Analytical modeling of the effect of particle clustering on the damage resistance.

9. Interpenetrating phase composites: Numerical simulations of deformation and damage.

9.1. Geometry–based and voxel array based 3D FE model generation: comparison.

9.2. Gradient interpenetrating phase composites.

9.3. Isotropic interpenetrating phase composites.

10. Fiber reinforced composites: Numerical analysis of damage initiation and growth.

10.1 Modeling of strength and damage of fiber reinforced composites: a brief overview.

10.2 Mesomechanical simulations of damage initiation and evolution in fiber reinforced composites.

11. Contact damage and wear of composite tool materials: Micro–macro relationships.

11.1 Micromechanical modeling of the contact wear of composites: a brief overview.

11.2 Mesomechanical simulations of wear of grinding wheels.

11.3 Micro–macro dynamical transitions for the contact wear of composites: black box modeling approach.

11.4 Microscale scattering of the tool material properties and the macroscopic efficiency of the tool.

12. Future fields: Computational mesomechanics and nanomaterials.



Note: Product cover images may vary from those shown
3 of 4


4 of 4
Leon Mishnaevsky Jr. is a Senior Scientist at the Risø National Laboratory, Denmark. Prior to joining Risø, he worked as a research scientist and later as a Heisenberg Fellow at the University of Stuttgart, and at the Darmstadt University of Technology. He received his hablitation (Dr. habil. degree) in Mechanics from the Darmstadt University of Technology, Germany, and his doctorate from the USSR Academy of Sciences. Dr. Mishnaevsky has held visiting professor/visiting scholar positions at M.I.T. and Rutgers (USA), University of Tokyo (Japan) and Ecole Nationale Superieure d′Arts et Metiers (France). He has published a book on "Damage and Fracture in Heterogeneous Materials" and over 100 research papers in different areas of computational mechanics of materials, micromechanics and mechanical engineering.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown