Panoramic Imaging. Sensor–Line Cameras and Laser Range–Finders. The Wiley–IS&T Series in Imaging Science and Technology

  • ID: 2171705
  • Book
  • 284 Pages
  • John Wiley and Sons Ltd
1 of 4
Panoramic imaging is a progressive application and research area. This technology has applications in digital photography, robotics, film productions for panoramic screens, architecture, environmental studies, remote sensing and GIS technology. Applications demand different levels of accuracy for 3D documentation or visualizations.
This book describes two modern technologies for capturing high–accuracy panoramic images and range data, namely the use of sensor–line cameras and laser range–finders. It provides mathematically accurate descriptions of the geometry of these sensing technologies and the necessary information required to apply them to 3D scene visualization or 3D representation. The book is divided into three parts: 

Part One contains a full introduction to panoramic cameras and laser range–finders, including a discussion of calibration to aid preparation of equipment ready for use.

Part Two explains the concept of stereo panoramic imaging, looking at epipolar geometry, spatial sampling, image quality control and camera analysis and design.

Part Three looks at surface modelling and rendering based on panoramic input data, starting with the basics and taking the reader through to more advanced techniques such as the optimization of surface meshes and data fusion.

There is also an accompanying website containing high–resolution visual samples and animations which illustrate techniques discussed in the text.

Panoramic Imaging is primarily aimed at researchers and students in engineering or computer science involved in using imaging technologies for 3D visualization or 3D scene reconstruction. It is also of significant use as an advanced manual to practising engineers in panoramic imaging. In brief, the book is of value to all those interested in current developments in multimedia imaging technology.
Note: Product cover images may vary from those shown
2 of 4

Series Preface.

Website and Exercises.

List of Symbols.

1. Introduction.

1.1 Panoramas

1.2 Panoramic Paintings

1.3 Panoramic or Wide–Angle Photographs

1.4 Digital Panoramas

1.5 Striving for Accuracy

1.6 Exercises

1.7 Further Reading

2. Cameras and Sensors.

2.1 Camera Models

2.2 Optics

2.3 Sensor Models

2.4 Examples and Challenges

2.5 Exercises

2.6 Further Reading

3. Spatial Alignments.

3.1 Mathematical Fundamentals

3.2 Central Projection:World into Image Plane

3.3 Classification of Panoramas

3.4 Coordinate Systems for Panoramas

3.5 General Projection Formula for Cylindrical Panorama

3.6 Rotating Cameras

3.7 Mappings between Different Image Surfaces

3.8 Laser Range–Finder

3.9 Exercises

3.10 Further Reading

4. Epipolar Geometry.

4.1 General Epipolar Curve Equation

4.2 Constrained Poses of Cameras

4.3 Exercises

4.4 Further Reading

5. Sensor Calibration.

5.1 Basics

5.2 Preprocesses for a Rotating Sensor–Line Camera

5.3 A Least–Square Error Optimization Calibration Procedure

5.4 Geometric Dependencies of R and w

5.5 Error Components in LRF Data

5.6 Exercises

5.7 Further Reading

6. Spatial Sampling.

6.1 Stereo Panoramas

6.2 Sampling Structure

6.3 Spatial Resolution

6.4 Distances between Spatial Samples

6.5 Exercises

6.6 Further Reading

7. Image Quality Control.

7.1 Two Requirements

7.2 Terminology

7.3 Parameter Optimization

7.4 Error Analysis

7.5 Exercises

7.6 Further Reading

8. Sensor Analysis and Design.

8.1 Introduction

8.2 Scene Composition Analysis

8.3 Stereoacuity Analysis

8.4 Specification of Camera Parameters

8.5 Exercises

8.6 Further Reading

9. 3D Meshing and Visualization.

9.1 3D Graphics

9.2 Surface Modeling

9.3 More Techniques for Dealing with Digital Surfaces

9.4 Exercises

9.5 Further Reading

10. Data Fusion.

10.1 Determination of Camera Image Coordinates

10.2 Texture Mapping

10.3 High Resolution Orthophotos

10.4 Fusion of Panoramic Images and Airborne Data

10.5 Exercises

10.6 Further Reading



Note: Product cover images may vary from those shown
3 of 4


4 of 4
Fay Huang
Reinhard Klette
Karsten Scheibe
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown