+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Force Microscopy. Applications in Biology and Medicine

  • ID: 2172713
  • Book
  • August 2006
  • 310 Pages
  • John Wiley and Sons Ltd
1 of 3
A complete examination of the uses of the atomic force microscope in biology and medicine

This cutting–edge text, written by a team of leading experts, is the first detailed examination of the latest, most powerful scanning probe microscope, the atomic force microscope (AFM). Using the AFM, in combination with conventional tools and techniques, readers gain a profound understanding of the cell, subcellular organelles, and biomolecular structure and function.

The text begins with three chapters describing the molecular machinery and mechanism of cell secretion and membrane fusion in cells, using approaches that combine AFM, electron microscopy, X–ray diffraction, photon correlation spectroscopy, molecular biology, biochemistry, and electrophysiology. The discovery of a new cellular structure the "porosome" or fusion pore the cells secretory machinery, the molecular mechanism of membrane fusion in cells, and the expulsion of intravesicular contents during cell secretion are outlined in the first three chapters. The book also covers:

  • Identification of the "porosome" in the growth hormone secreting cell of the pituitary gland
  • Probing the structural and physical properties of microbial cell surfaces
  • Scanning probe microscopic characterization of the higher plant cell wall and its components
  • Case studies of nano drug delivery systems using engineered dendrimers
  • AFM techniques for studying living cells
  • Investigating the intermolecular forces of leukocyte adhesion molecules
  • Protein–protein interactions
  • Micromechanical properties of lipid bilayers and vesicles

The text concludes with four chapters that examine new and emerging approaches in the use of force microscopy in biology and medicine.

This text is ideal for advanced undergraduate and graduate students and researchers in cell and molecular biology, genetics, genomics, physiology, neuroscience, biophysics, and biochemistry. Not only does it provide the theory, but also practical considerations such as the selection of the right tools and approach.

Note: Product cover images may vary from those shown
2 of 3


Chapter 1. Porosome: The Universal Secretory Machinery in Cells (Bhanu P. Jena).

Chapter 2. Molecular Mechanism of SNARE–Induced Membrane Fusion (Bhanu P. Jena).

Chapter 3. Molecular Mechanism of Secretory Vesicle Content Expulsion During Cell Secretion (Bhanu P. Jena).

Chapter 4. Fusion Pores in Growth–Hormone–Secreting Cells of the Pituitary Gland: An AFM Study (Lloyd L. Anderson and Bhanu P. Jena).

Chapter 5. Properties of Microbial Cell Surfaces Examined by Atomic Force Microscopy (Yves F. Dufre&ncirc;e).

Chapter 6. Scanning Probe Microscopy of Plant Cell Wall and Its Constituents (Ksenija Radotić, Miodrag Mićić, and Milorad Jeremić).

Chapter 7. Cellular Interactions of Nano Drug Delivery Systems (Rangaramanujam M. Kannan, Omathanu Pillai Perumal, and Sujatha Kannan).

Chapter 8. Adapting AFM Techniques for Studies on Living Cells (J. K. Heinrich Hörber)

Chapter 9. Intermolecular Forces of Leukocyte Adhesion Molecules (Xiaohui Zhang and Vincent T. Moy).

Chapter 10. Mechanisms of Avidity Modulation in Leukocyte Adhesion Studied by AFM (Ewa P. Wojcikiewicz and Vincent T. Moy).

Chapter 11. Resolving the Thickness and Micromechanical Properties of Lipid Bilayers and Vesicles Using AFM (Guangzhao Mao and Xuemei Liang).

Chapter 12. Imaging Soft Surfaces by SFM (Andreas Janke and Tilo Pompe).

Chapter 13. High–Speed Atomic Force Microscopy of Biomolecules in Motion (Tilman E. Schäffer).

Chapter 14. Atomic Force Microscopy in Cytogenetics (S. Thalhammer and W. M. Heckl).

Chapter 15. Atomic Force Microscopy in the Study of Macromolecular Interactions in Hemostasis and Thrombosis: Utility for Investigation of the Antiphospholipid Syndrome (William J. Montigny, Anthony S. Quinn, Xiao–Xuan Wu, Edwin G. Bovill, Jacob H. Rand, and Douglas J. Taatjes).


Note: Product cover images may vary from those shown
3 of 3
Bhanu P. Jena
J. K. Heinrich Hörber
Note: Product cover images may vary from those shown