Two–Dimensional Correlation Spectroscopy. Applications in Vibrational and Optical Spectroscopy

Description:
In the last decade or so, perturbation–based generalized two–dimensional (2D) correlation spectroscopy has become a powerful and versatile tool for the detailed analysis of various spectroscopic data. This seemingly straightforward idea of spreading the spectral information onto the second dimension, by applying the well–established classical correlation analysis methodology, has turned out to be very fertile ground for the development a new generation of modern spectral analysis techniques.

In Chapter 1, some historical perspectives and an overview of the field of perturbation–based 2D correlation spectroscopy is provided. Chapter 2 covers the central theoretical background of the two–dimensional correlation method. Chapter 3 provides a rapid and simple computational method for obtaining 2D correlation spectra from experimentally obtained spectral data set, followed by the practical considerations to be taken into account for the 2D correlation analysis of real–world spectral data in Chapter 4. The next three chapters deal with more advanced topics. Chapter 5 introduces the concept of sample–sample correlation and hybrid correlation, and Chapter 6 explores the relationship between 2D correlation spectroscopy and classical statistical and chemometrical treatments of data. Chapter 7 examines other types of 2D spectroscopy, such as nonlinear optical 2D spectroscopy based on ultra fast laser pulses, 2D mapping of correlation coefficient, and newly emerging variant forms of 2D correlation analyses, such as moving–window correlation and model based correlation method.

The remaining chapters of the book are devoted to specific application examples of 2D correlation spectroscopy illustrating how the technique can be utilized in various aspects of spectroscopic studies. These examples include:

- Generalized Two–Dimensional Correlation Studies of Polymers and Liquid Crystals
- Two–Dimensional Correlation Spectroscopy and Chemical Reactions
- Protein Research by Two–Dimensional Correlation Spectroscopy
- Applications of 2D Correlation Spectroscopy to Biological and Biomedical Sciences
- Application of Hetero–spectral Correlation Analysis
- Extension of Two–Dimensional Correlation Analysis to Other Field

This book serves as an introductory text for newcomers to the field, as well as presents a survey of specific interest areas for the experienced practitioners.

Contents:
Preface xi
Acknowledgements xiii
1 Introduction 1
 1.1 Two–dimensional Spectroscopy 1
 1.2 Overview of the Field 3
 1.3 Generalized Two–dimensional Correlation 6
 1.3.1 Types of Spectroscopic Probes 7
 1.3.2 External Perturbations 7
 1.4 Heterospectral Correlation 9
 1.5 Universal Applicability 10
2 Principle of Two–dimensional Correlation Spectroscopy 15
2.1 Two-dimensional Correlation Spectroscopy 15
 2.1.1 General Scheme 15
 2.1.2 Type of External Perturbations 16
2.2 Generalized Two-dimensional Correlation 17
 2.2.1 Dynamic Spectrum 17
 2.2.2 Two-dimensional Correlation Concept 18
 2.2.3 Generalized Two-dimensional Correlation Function 19
 2.2.4 Heterospectral Correlation 20
2.3 Properties of 2D Correlation Spectra 20
 2.3.1 Synchronous 2D Correlation Spectrum 20
 2.3.2 Asynchronous 2D Correlation Spectrum 22
 2.3.3 Special Cases and Exceptions 24
2.4 Analytical Expressions for Certain 2D Spectra 24
 2.4.1 Comparison of Linear Functions 24
 2.4.2 2D Spectra Based on Sinusoidal Signals 26
 2.4.3 Exponentially Decaying Intensities 28
 2.4.4 Distributed Lorentzian Peaks 29
 2.4.5 Signals with more Complex Waveforms 30
2.5 Cross-correlation Analysis and 2D Spectroscopy 31
 2.5.1 Cross-correlation Function and Cross Spectrum 31
 2.5.2 Cross-correlation Function and Synchronous Spectrum 32
 2.5.3 Hilbert Transform 33
 2.5.4 Orthogonal Correlation Function and Asynchronous Spectrum 34
 2.5.5 Disrelation Spectrum 35
3 Practical Computation of Two-dimensional Correlation Spectra 39
 3.1 Computation of 2D Spectra from Discrete Data 39
 3.1.1 Synchronous Spectrum 39
 3.1.2 Asynchronous Spectrum 40
 3.2 Unevenly Spaced Data 41
 3.3 Disrelation Spectrum 43
 3.4 Computational Efficiency 43
4 Generalized Two-dimensional Correlation Spectroscopy in Practice 47
4.1 Practical Example 47
4.1.1 Solvent Evaporation Study 47
4.1.2 2D Spectra Generated from Experimental Data 48
4.1.3 Sequential Order Analysis by Cross Peak Signs 50
4.2 Pretreatment of Data 52
4.2.1 Noise Reduction Methods 52
4.2.2 Baseline Correction Methods 53
4.2.3 Other Pretreatment Methods 54
4.3 Features Arising from Factors other than Band Intensity Changes 56
4.3.1 Effect of Band Position Shift and Line Shape Change 56
4.3.2 Simulation Studies 57
4.3.3 2D Spectral Features from Band Shift and Line Broadening 59
5 Further Expansion of Generalized Two–dimensional Correlation Spectroscopy
Sample Sample Correlation and Hybrid Correlation 65
5.1 Sample Sample Correlation Spectroscopy 65
5.1.1 Correlation in another Dimension 65
5.1.2 Matrix Algebra Outlook of 2D Correlation 66
5.1.3 Sample Sample Correlation Spectra 67
5.1.4 Application of Sample Sample Correlation 69
5.2 Hybrid 2D Correlation Spectroscopy 72
5.2.1 Multiple Perturbations 72
5.2.2 Correlation between Data Matrices 72
5.2.3 Case Studies 73
5.3 Additional Remarks 74
6 Additional Developments in Two–dimensional Correlation Spectroscopy Statistical Treatments, Global Phase Maps, and Chemometrics 77
6.1 Classical Statistical Treatments and 2D Spectroscopy 77
6.1.1 Variance, Covariance, and Correlation Coefficient 77
6.1.2 Interpretation of 2D Disrelation Spectrum 78
6.1.3 Coherence and Correlation Phase Angle 79
6.1.4 Correlation Enhancement 80
6.2 Global 2D Phase Maps 81
6.2.1 Further Discussion on Global Phase 81
6.2.2 Phase Map with a Blinding Filter 82
6.2.3 Simulation Study 83
6.3 Chemometrics and 2D Correlation Spectroscopy 86
6.3.1 Comparison between Chemometrics and 2D Correlation 86
6.3.2 Factor Analysis 87
6.3.3 Principal Component Analysis (PCA) 87
6.3.4 Number of Principal Factors 88
6.3.5 PCA–reconstructed Spectra 89
6.3.6 Eigenvalue Manipulating Transformation (EMT) 91
7 Other Types of Two–dimensional Spectroscopy 95
7.1 Nonlinear Optical 2D Spectroscopy 96
7.1.1 Ultrafast Laser Pulses 96
7.1.2 Comparison with Generalized 2D Correlation Spectroscopy 97
7.1.3 Overlap Between Generalized 2D Correlation and Nonlinear Spectroscopy 98
7.2 Statistical 2D Correlation Spectroscopy 99
7.2.1 Statistical 2D Correlation by Barton II et al. 99
7.2.2 Statistical 2D Correlation by Jasic and Ozaki 102
7.2.3 Other Statistical 2D Spectra 109
7.2.4 Link to Chemometrics 109
7.3 Other Developments in 2D Correlation Spectroscopy 110
7.3.1 Moving–window Correlation 110
7.3.2 Model–based 2D Correlation Spectroscopy 110
8 Dynamic Two–dimensional Correlation Spectroscopy Based on Periodic Perturbations 115
8.1 Dynamic 2D IR Spectroscopy 115
8.1.1 Sinusoidal Signals 115
8.1.2 Small–amplitude Perturbation and Linear Response 116
8.1.3 Dynamic IR Linear Dichroism (DIRLD) 117
8.1.4 2D Correlation Analysis of Dynamic IR Dichroism 119
8.2 Dynamic 2D IR Dichroism Spectra of Polymers 121
8.2.1 Polystyrene/Polyethylene Blend 122
8.2.2 Polystyrene 127
12.2.1 N Isomeric Form of HSA 237
12.2.2 N F Transition Region of HSA 239
12.3 Aggregation of Lipid-bound Cytochrome c 241
13 Applications of Two-dimensional Correlation Spectroscopy to Biological and Biomedical Sciences 245
13.1 2D NIR Study of Milk 246
13.2 2D IR Study of Synthetic and Biological Apatites 251
13.3 Identification and Quality Control of Traditional Chinese Medicines 253
14 Application of Heterospectral Correlation Analysis 257
14.1 Correlation between different Spectral Measurements 257
14.2 SAXS/IR Dichroism Correlation Study of Block Copolymer 258
14.3 Raman/NIR Correlation Study of Partially Miscible Blends 260
14.4 ATR/IR NIR Correlation Study of BIS(hydroxyethyl terephthalate) Oligomerization 262
14.5 XAS/Raman Correlation Study of Electrochemical Reaction of Lithium with CoO 264
15 Extension of Two-dimensional Correlation Analysis to Other Fields 271
15.1 Applications of 2D Correlation beyond Optical Spectroscopy 271
15.2 2D Correlation Gel Permeation Chromatography (GPC) 271
15.2.1 Time-resolved GPC Study of a Sol Gel Polymerization Process 272
15.2.2 2D GPC Correlation Maps 274
15.2.3 Reaction Mechanisms Deduced from the 2D GPC Study 279
15.3 2D Mass Spectrometry 281
15.4 Other Unusual Applications of 2D Correlation Analysis 282
15.5 Return to 2D NMR Spectroscopy 283
15.5.1 2D Correlation in NMR 283
15.5.2 Generalized Correlation (GECO) NMR 284
15.5.3 2D Correlation in Diffusion-ordered NMR 284
15.6 Future Developments 288
Index 291

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2175718/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Two-Dimensional Correlation Spectroscopy. Applications in Vibrational and Optical Spectroscopy
Web Address: http://www.researchandmarkets.com/reports/2175718/
Office Code: SC

Product Format
Please select the product format and quantity you require:

Quantity

Hard Copy (Hard Back): [] USD 226 + USD 31 Shipping/Handling

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World