+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Polarized Light in Liquid Crystals and Polymers

  • ID: 2175861
  • Book
  • 400 Pages
  • John Wiley and Sons Ltd
1 of 3
The latest advances in the optics of small birefringent structures

With the proliferation of liquid crystal technologies such as flat panel displays, understanding the polarization of light in liquid crystals has become a vital concern of optics, biology, communication, and numerous other areas in research and industry. Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro– and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.

An all–inclusive book, Polarized Light in Liquid Crystals and Polymers features:

  • A focus on high–resolution structures found in modern display devices
  • An introduction to optical properties of liquid crystal texture
  • Novel coverage of three–dimensional anisotropic materials with respect to their light propagation properties
  • Tools such as matrix methods, ray tracing, and space–grid time–domain techniques to effectively solve optical simulation problems
  • A number of examples using measurements and simulation
  • Coverage of how to use the polarization microscope to characterize textures and structures in liquid crystals and polymers
  • An overview of photonic devices based on liquid crystals, covering the state of the art of existing systems
  • Unique coverage of gradient–index based devices
  • Over 200 illustrations and tables
  • A thorough listing of references

Presenting a comprehensive treatment of an exciting and rapidly developing field, Polarized Light in Liquid Crystals and Polymers provides both students and practitioners with a superlative resource for learning and reference.

Note: Product cover images may vary from those shown
2 of 3

1 Polarized Light.

1.1 Introduction.

1.2 Concept of Light Polarization.

1.3 Description of The State of Polarization.

1.4 The Stokes Concept.

1.5 The Jones Concept.

1.6 Coherence and Polarized Light.


2 Electromagnetic Waves in Anisotropic Materials.

2.1 Introduction.

2.2 Analytical Background.

2.3 Time Harmonic Fields and Plane Waves.

2.4 Maxwell s Equations in Matrix Representation.

2.5 Separation of Polarizations for Inhomogeneous Problems.

2.6 Separation of Polarizations for Anisotropic Problems.

2.7 Dielectric Tensor and Index Ellipsoid.


3 Description of Light Propagation with Rays.

3.1 Introduction.

3.2 Light Rays and Wave Optics.

3.3 Light Propagation Through Interfaces (Fresnel Formula) .

3.4 Propagation Direction of Rays in Crystals.

3.5 Propagation Along A Principal Axis.

3.6 Rays at Isotropic Anisotropic Interfaces.

3.7 Gaussian Beams.


4 Stratified Birefringent Media.

4.1 Maxwell Equations for Stratified Media.

4.2 Jones Formalism in Examples.

4.3 Extended Jones Matrix Method.

4.4 The 4x4 Berreman Method.

4.5 Analytical Solution for A Birefringent Slab.

4.6 Reflection and Transmission.


5 Space–Grid Time–Domain Techniques.

5.1 Introduction.

5.2 Description of the FDTD Method.

5.3 Implementation and Boundary Conditions.

5.4 Rigorous Optics for Liquid Crystals.


6 Organic Optical Materials.

6.1 Introduction.

6.2 Polymers for Optics.

6.3 Physical Properties of Polymers.

6.4 Optical Properties of Polymers.

6.5 Liquid Crystal Phases.

6.6 Liquid Crystal Polymers.

6.7 Birefringence in Isotropic Materials.

6.8 Form Birefringence.

6.9 Order–Induced Birefringence.

6.10 Optical Properties of Liquid Crystals and Oriented Polymers.


7 Practical Polarization Optics with the Microscope.

7.1 Introduction.

7.2 Microscope Characteristics.

7.3 Polarization Microscope.

7.4 Polarizers.

7.5 Polarization Colors.

7.6 Compensation and Retardation Measurement.

7.7 Conoscopy.

7.8 Local Polarization Mapping.


8 Optics of Liquid Crystal Textures.

8.1 Introduction.

8.2 Calculation of Liquid Crystal Director Distributions.

8.3 Optical Properties of Uniform Textures.

8.4 Optical Properties of Liquid Crystal Defects.

8.5 Surface Line Defects in Nematics.

8.6 Defects in Smectic Phases.

8.7 Confined Nematic Liquid Crystals.

8.8 Instabilities in Liquid Crystals.

8.9 Deformation of Liquid Crystal Directors by Fringing Fields.

8.10 Resolution Limit of Switchable Liquid Crystal Devices.

8.11 Switching in Layered Phases.


9 Refractive Birefringent Optics.

9.1 Birefringent Optical Elements.

9.2 Fabrication of Refractive Components.

9.3 Optical Properties of Modified Birefringent Components.

9.4 Liquid Crystal Phase Shifters.

9.5 Modal Control Elements.

9.6 Interferometers Based on Polarization Splitting.

9.7 Birefringent Microlenses.

9.8 Electrically Switchable Microlenses.


10 Diffractive Optics with Anisotropic Materials.

10.1 Introduction.

10.2 Principles of Fourier Optics.

10.3 Polarization Properties.

10.4 Diffraction at Binary Gratings.

10.5 Concepts and Fabrication.

10.6 Diffractive Elements Due to surface Modifications.

10.7 Electrically Switchable Gratings.

10.8 Switchable Diffractive Lenses.


11 Bragg Diffraction.

11.1 Reflection by Multilayer Structures.

11.2 Polymer Films.

11.3 Giant Polarization Optics.

11.4 Reflection by Cholesteric Liquid Crystals.

11.5 Color Properties of Cholesteric Bragg Reflectors.

11.6 Apodization of Cholesteric Bragg Filters.

11.7 Reflection by Dispersed Cholesteric Liquid Crystals.

11.8 Depolarization Effects by Polymer Dispersed Cholesteric Liquid Crystals.

11.9 Defect Structures in Cholesteric Bragg Reflectors.

11.10 Structured Cholesteric Bragg Filters.

11.11 Plane Wave Approach to the Optics of Blue Phases.



Note: Product cover images may vary from those shown
3 of 3


4 of 3
Toralf Scharf
Note: Product cover images may vary from those shown