Integration of Ferroelectric and Piezoelectric Thin Films. Concepts and Applications for Microsystems

  • ID: 2179208
  • Book
  • 422 Pages
  • John Wiley and Sons Ltd
1 of 4
This book contains four parts. The first one is dedicated to concepts. It starts with the definitions and examples of what is piezo–pyro and ferroelectricity by considering the symmetry of the material. Thereafter, these properties are described within the framework of Thermodynamics. The second part described the way to integrate these materials in Microsystems. The third part is dedicated to characterization: composition, structure and a special focused on electrical behaviors. The last part gives a survey of state of the art applications using integrated piezo or/and ferroelectric films.
Note: Product cover images may vary from those shown
2 of 4

Preface xiiiEmmanuel DEFA

General Introduction xvii

Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity 1Emmanuel DEFA

1.1. Crystal structure 1

1.2. Piezoelectricity, pyroelectricity and ferroelectricity definitions 9

1.3. Simplified examples 10

1.4. Three typical structures: wurtzite, ilmenite and perovskite 16

1.5. Bibliography 23

Chapter 2. Thermodynamic Study: a Structural Approach 25Emmanuel DEFA

2.1. History 25

2.2. Revisiting statistical thermodynamics 26

2.3. State functions 41

2.4. Linear equations ?npiezoelectricity 44

2.5. Non linear equations ?nelectrostriction 47

2.6. Bibliography 48

Chapter 3. Ferroelectric–paraelectric Phase Transition Thermodynamic Modeling 49Emmanuel DEFA

3.1. Hypothesis on Gibbs elastic energy 49

3.2. Second–order transition 52

3.3. Effects of stresses 58

3.4. First–order transition 60

3.5. Conclusion 65

3.6. Bibliography 65

Chapter 4. Mechanical Formalism 67Emmanuel DEFA

4.1. Introduction 67

4.2. Hooke s law 67

4.3. Definitions of local strains 69

4.4. Definition of local strains 77

4.5. Stress–strain relation 83

4.6. Elastic energy density 86

4.7. Expression of the elasticity tensor as a function of elements of symmetry 89

4.8. Bibliography 93

Chapter 5. Dielectric Formalism 95Emmanuel DEFA

5.1. Introduction 95

5.2. The dielectric effect seen by Faraday 95

5.3. Electric polarization and displacement 99

5.4. The dielectric constant 104

5.5. The local field in dielectrics: polarization catastrophe 105

5.6. Dielectric relaxation 109

5.7. Electric energy density 115

5.8. Bibliography 117

Chapter 6. Piezoelectric Formalism 119Emmanuel DEFA and Mathieu PIJOLAT

6.1. Thermodynamic equations 119

6.2. Reducing coefficients using crystal symmetry 121

6.3. One–dimensional microscopic model 126

6.4. Electromechanical coupling coefficient 130

6.5. Piezoelectric coefficients of key materials 134

6.6. Calculating coupling as a function of crystal orientation 136

6.7. Piezoelectric coefficients in the case of ferroelectric materials 138

6.8. Relation between piezoelectric formalism and matter 139

6.9. Bibliography 141

Chapter 7. Acoustic Formalism 143Alexandre REINHARDT

7.1. Propagation of bulk waves 143

7.2. Bulk wave resonator 163

7.3. Bulk acoustic waves filter 185

7.4. Bibliography 190

Chapter 8. Electrostrictive Formalism 191Emmanuel DEFA

8.1. Foundations of electrostriction 191

8.2. Thermodynamic model of electrostriction case of the resonator 192

8.3. The electrostriction tensor 195

8.4. Microscopic model of electrostriction 197

8.5. Electrostrictive resonator 202

8.6. Bibliography 206

Chapter 9. Electric Characterization 207Emmanuel DEFA , Gwenaël LE RHUN and Emilien BOUYSSOU

9.1. Static piezoelectric characterization of thin films 207

9.2. Piezoelectric and atomic force microscopy 215

9.3. Ferroelectric measurement 225

9.4. Dielectric measurement 232

9.5. Leakage current in metal/insulator/metal structures 236

9.6. Bibliography 245

Chapter 10. Piezoelectric Resonators and Filters 249Alexandre REINHARDT and Christophe BILLARD

10.1. Acoustic resonators: principle and history 249

10.2. BAW technology 269

10.3. CRF technology 283

10.4. Bibliography 291

Chapter 11. High Overtone Bulk Acoustic Resonator (HBAR) 297Mathieu PIJOLAT, Chrystel DEGUET and Sylvain BALLANDRAS

11.1. About HBAR 297

11.2. Technology 302

11.3. Examples of implementations 305

11.4. Conclusions about HBAR 312

11.5. Bibliography 313

Chapter 12. Electrostrictive Resonators 315Alexandre VOLATIER, Brice IVIRA, Christophe ZINCK, Nizar BEN HASSINE and Emmanuel DEFA

12.1. Introduction 315

12.2. State of the art 316

12.3. Experimental implementations 326

12.4. Simulation of a filter with electrostrictive resonators 341

12.5. Status of perovskite electrostrictive resonators 342

12.6. PZT–based tunable frequency ferroelectric acoustic resonator 344

12.7. Nonlinear effect in piezoelectric AlN 348

12.8. Conclusion with electrostriction 354

12.9. Bibliography 355

Chapter 13. Thin Film Piezoelectric Transducers 357Matthieu CUEFF, Patrice REY, Fabien FILHOL and Emmanuel DEFA

13.1. Introduction 357

13.2. State of the art 358

13.3. Resonant membranes 361

13.4. Resonant micromirror 366

13.5. Piezoelectric micro–switch 371

13.6. Sign of piezoelectric coefficients 391

13.7. Bibliography 394

List of Authors 397

Index 399

Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Emmanuel Defaÿ
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll