Wireless Communications. Algorithmic Techniques

Description: An advanced introduction to algorithmic techniques for wireless communications, blending basic principles with advanced concepts and techniques

This reference provides a high-level introduction to the study of algorithmic techniques employed in digital wireless communication systems over fading channels. Its main objective is to develop a theoretical framework that will enable the reader to develop solutions to detection, equalization, channel estimation, error correction coding and coded modulation problems in wireless communications.

This book discusses in detail deterministic and stochastic descriptions of wireless channels, single-carrier and multicarrier digital modulation techniques, optimal signal detection, channel estimation techniques, channel equalization algorithms, classical and modern channel coding schemes, coded modulation techniques, and iterative methods for channel equalization and decoding of channel codes.

Special features include:
- Important results previously scattered over a huge number of publications are now collected in a single volume
- A broad coverage of fundamental topics in wireless communications, taking into consideration both basic and advanced transmission techniques
- An historical perspective on various important research areas in the field of wireless communication techniques
- Highlights trends in various research areas in the field of wireless communications

Contents:
Preface xi
List of Acronyms xiii

1 Introduction 1

1.1 Structure of a Digital Communication System 3

1.2 Plan of the Book 7

1.3 Further Reading 8

Part I MODULATION AND DETECTION

2 Wireless Channels 11

2.1 Introduction 11

2.2 Mathematical Description of SISO Wireless Channels 16

2.2.1 Input Output Characterization of a SISO Wireless Channel 16

2.2.2 Statistical Characterization of a SISO Wireless Channel 23

2.2.3 Reduced-Complexity Statistical Models for SISO Channels 36

2.3 Mathematical Description and Modeling of MIMO Wireless Channels 44

2.3.1 Input Output Characterization of a MIMO Wireless Channel 45

2.3.2 Statistical Characterization of a MIMO Wireless Channel 50
2.3.3 Reduced-Complexity Statistical Modeling of MIMO Channels 57
2.4 Historical Notes 57
2.4.1 Large-Scale Fading Models 58
2.4.2 Small-Scale Fading Models 60
2.5 Further Reading 64
3 Digital Modulation Techniques 65
3.1 Introduction 65
3.2 General Structure of a Digital Modulator 65
3.3 Representation of Digital Modulated Waveforms on an Orthonormal Basis 68
3.4 Bandwidth of Digital Modulations 70
3.5 Passband PAM 74
3.5.1 Signal Model 74
3.5.2 Constellation Selection 76
3.5.3 Data Block Transmission with Passband PAM Signals for Frequency-Domain Equalization 79
3.5.4 Power Spectral Density of Linear Modulations 80
3.6 Continuous Phase Modulation 86
3.6.1 Signal Model 86
3.6.2 Full-Response CPM 89
3.6.3 Partial-Response CPM 93
3.6.4 Multi-ϕ CPM 98
3.6.5 Alternative Representations of CPM Signals 100
3.6.6 Data Block Transmission with CPM Signals for Frequency-Domain Equalization 107
3.6.7 Power Spectral Density of Continuous Phase Modulations 110
3.7 OFDM 116
3.7.1 Introduction 116
3.7.2 OFDM Signal Model 122
3.7.3 Power Spectral Density of OFDM 131
3.7.4 The PAPR Problem in OFDM 135
3.8 Lattice-Based Multidimensional Modulations 137
3.8.1 Lattices: Basic Definitions and Properties 137
3.8.2 Elementary Constructions of Lattices 144
3.9 Spectral Properties of a Digital Modulation at the Output of a Wireless Channel 146

3.10 Historical Notes 149

3.10.1 Passband PAM Signaling 149

3.10.2 CPM Signaling 151

3.10.3 MCM Signaling 152

3.10.4 Power Spectral Density of Digital Modulations 153

3.11 Further Reading 154

4 Detection of Digital Signals over Wireless Channels: Decision Rules 155

4.1 Introduction 155

4.2 Wireless Digital Communication Systems: Modeling, Receiver Architecture and Discretization of the Received Signal 156

4.2.1 General Model of a Wireless Communication System 156

4.2.2 Receiver Architectures 157

4.3 Optimum Detection in a Vector Communication System 159

4.3.1 Description of a Vector Communication System 159

4.3.2 Detection Strategies and Error Probabilities 159

4.3.3 MAP and ML Detection Strategies 162

4.3.4 Diversity Reception and Some Useful Theorems about Data Detection 167

4.4 Mathematical Models for the Receiver Vector 168

4.4.1 Extraction of a Set of Sufficient Statistics from the Received Signal 169

4.4.2 Received Vector for PAM Signaling 177

4.4.3 Received Vector for CPM Signaling 181

4.4.4 Received Vector for OFDM Signaling 184

4.5 Decision Strategies in the Presence of Channel Parameters: Optimal Metrics and Performance Bounds 188

4.5.1 Signal Model and Algorithm Classification 188

4.5.2 Detection for Transmission over of a Known Channel 189

4.5.3 Detection in the Presence of a Statistically Known Channel 198

4.5.4 Detection in the Presence of an Unknown Channel 205

4.6 Expectation Maximization Techniques for Data Detection 207

4.6.1 The EM Algorithm 207

4.6.2 The Bayesian EM Algorithm 210

4.6.3 Initialization and Convergence of EM–Type Algorithms 213
8.5 Organization of the Following Chapters 346
8.6 Historical Notes 346
8.7 Further Reading 347
9 Classical Coding Schemes 349
9.1 Block Codes 349
9.1.1 Introduction 349
9.1.2 Structure of Linear Codes over GF(q) 350
9.1.3 Properties of Linear Block Codes 352
9.1.4 Cyclic Codes 357
9.1.5 Other Relevant Linear Block Codes 369
9.1.6 Decoding Techniques for Block Codes 371
9.1.7 Error Performance 388
9.2 Convolutional Codes 390
9.2.1 Introduction 390
9.2.2 Properties of Convolutional Codes 394
9.2.3 Maximum Likelihood Decoding of Convolutional Codes 408
9.2.4 MAP Decoding of Convolutional Codes 413
9.2.5 Sequential Decoding of Convolutional Codes 419
9.2.6 Error Performance of ML Decoding of Convolutional Codes 422
9.3 Classical Concatenated Coding 432
9.3.1 Parallel Concatenation: Product Codes 432
9.3.2 Serial Concatenation: Outer RS Code 434
9.4 Historical Notes 435
9.4.1 Algebraic Coding 435
9.4.2 Probabilistic Coding 438
9.5 Further Reading 439
10 Modern Coding Schemes 441
10.1 Introduction 441
10.2 Concatenated Convolutional Codes 442
10.2.1 Parallel Concatenated Coding Schemes 442
10.2.2 Serially Concatenated Coding Schemes 444
10.2.3 Hybrid Concatenated Coding Schemes 445
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.3 Error Performance</td>
<td>522</td>
</tr>
<tr>
<td>11.4 Modulation Codes Based on Multilevel Coding</td>
<td>524</td>
</tr>
<tr>
<td>11.4.1 Code Construction for AWGN Channels</td>
<td>524</td>
</tr>
<tr>
<td>11.4.2 Multistage Decoder</td>
<td>528</td>
</tr>
<tr>
<td>11.4.3 Error Performance</td>
<td>529</td>
</tr>
<tr>
<td>11.4.4 Multilevel Codes for Rayleigh Flat Fading Channels</td>
<td>530</td>
</tr>
<tr>
<td>11.5 Space–Time Coding</td>
<td>531</td>
</tr>
<tr>
<td>11.5.1 ST Coding for Frequency–Flat Fading Channels</td>
<td>531</td>
</tr>
<tr>
<td>11.5.2 ST Coding for Frequency–Selective Fading Channels</td>
<td>561</td>
</tr>
<tr>
<td>11.6 Historical Notes</td>
<td>565</td>
</tr>
<tr>
<td>11.7 Further Reading</td>
<td>566</td>
</tr>
<tr>
<td>12 Combined Equalization and Decoding</td>
<td>567</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>567</td>
</tr>
<tr>
<td>12.2 Noniterative Techniques</td>
<td>568</td>
</tr>
<tr>
<td>12.3 Algorithms for Combined Equalization and Decoding</td>
<td>571</td>
</tr>
<tr>
<td>12.3.1 Introduction</td>
<td>571</td>
</tr>
<tr>
<td>12.3.2 Turbo Equalization from a FG Perspective</td>
<td>575</td>
</tr>
<tr>
<td>12.3.3 Reduced–Complexity Techniques for SiSo Equalization</td>
<td>580</td>
</tr>
<tr>
<td>12.3.4 Turbo Equalization in the FD</td>
<td>583</td>
</tr>
<tr>
<td>12.3.5 Turbo Equalization in the Presence of an Unknown Channel</td>
<td>585</td>
</tr>
<tr>
<td>12.4 Extension to MIMO</td>
<td>586</td>
</tr>
<tr>
<td>12.5 Historical Notes</td>
<td>588</td>
</tr>
<tr>
<td>12.5.1 Reduced–Complexity SiSo Equalization</td>
<td>588</td>
</tr>
<tr>
<td>12.5.2 Error Performance and Convergence Speed in Turbo Equalization</td>
<td>588</td>
</tr>
<tr>
<td>12.5.3 SiSo Equalization Algorithms in the Frequency Domain</td>
<td>589</td>
</tr>
<tr>
<td>12.5.4 Use of Precoding</td>
<td>589</td>
</tr>
<tr>
<td>12.5.5 Turbo Equalization and Factor Graphs</td>
<td>589</td>
</tr>
<tr>
<td>12.5.6 Turbo Equalization for MIMO Systems</td>
<td>589</td>
</tr>
<tr>
<td>12.5.7 Related Techniques</td>
<td>590</td>
</tr>
<tr>
<td>12.6 Further Reading</td>
<td>590</td>
</tr>
<tr>
<td>Appendix A Fourier Transforms</td>
<td>591</td>
</tr>
<tr>
<td>Appendix B Power Spectral Density of Random Processes</td>
<td>593</td>
</tr>
</tbody>
</table>
B.1 Power Spectral Density of a Wide–Sense Stationary Random Process 593
B.3 Power Spectral Density of a Bandpass Random Process 595
Appendix C Matrix Theory 597
Appendix D Signal Spaces 601
D.1 Representation of Deterministic Signals 601
D.1.1 Basic Definitions 601
D.1.2 Representation of Deterministic Signals via Orthonormal Bases 602
D.2 Representation of Random Signals via Orthonormal Bases 606
Appendix E Groups, Finite Fields and Vector Spaces 609
E.1 Groups 609
E.2 Fields 611
E.2.1 Axiomatic Definition of a Field and Finite Fields 611
E.2.2 Polynomials and Extension Fields 612
E.2.3 Other Definitions and Properties 616
E.2.4 Computation Techniques for Finite Fields 620
E.3 Vector Spaces 622
Appendix F Error Function and Related Functions 625
References 629
Index 713

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Wireless Communications. Algorithmic Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2180745/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back): USD 125 + USD 31 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World