+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

# Fundamentals of the Finite Element Method for Heat and Mass Transfer. 2nd Edition. Wiley Series in Computational Mechanics

• ID: 2180836
• Book
• February 2016
• 464 Pages
• John Wiley and Sons Ltd
1 of 3

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition is a comprehensively updated new edition and is a unique book on the application of the finite element method to heat and mass transfer.

Addresses fundamentals, applications and computer implementation

Includes a large number of worked examples and exercises

Fills the gap between learning and research

Note: Product cover images may vary from those shown
2 of 3
Preface to the Second Edition xii

Series Editor s Preface xiv

1 Introduction 1

1.1 Importance of Heat and Mass Transfer 1

1.2 Heat Transfer Modes 2

1.3 The Laws of Heat Transfer 3

1.4 Mathematical Formulation of Some Heat Transfer Problems 5

1.4.1 Heat Transfer from a Plate Exposed to Solar Heat Flux  5

1.4.2 Incandescent Lamp  7

1.4.3 Systems with a Relative Motion and Internal Heat Generation  8

1.5 Heat Conduction Equation  10

1.6 Mass Transfer 13

1.7 Boundary and Initial Conditions 13

1.8 Solution Methodology 15

1.9 Summary 15

1.10 Exercises 16

References  17

2 Some Basic Discrete Systems 19

2.1 Introduction 19

2.2.1 Heat Flow in a Composite Slab 20

2.2.2 Fluid Flow Network 23

2.2.3 Heat Transfer in Heat Sinks 26

2.3 Transient Heat Transfer Problem 28

2.4 Summary 31

2.5 Exercises 31

References  36

3 The Finite Element Method 39

3.1 Introduction 39

3.2 Elements and Shape Functions  42

3.2.1 One–dimensional Linear Element  43

3.2.3 Two–dimensional Linear Triangular Element 49

3.2.4 Area Coordinates 53

3.2.7 Isoparametric Elements 63

3.2.8 Three–dimensional Elements 72

3.3 Formulation (Element Characteristics) 76

3.3.1 Ritz Method (Heat Balance Integral Method Goodman s Method) 78

3.3.2 Rayleigh Ritz Method (Variational Method) 79

3.3.3 The Method of Weighted Residuals 82

3.3.4 Galerkin Finite ElementMethod 86

3.4 Formulation for the Heat Conduction Equation 89

3.4.1 Variational Approach 90

3.4.2 The GalerkinMethod 93

3.5 Requirements for Interpolation Functions 94

3.6 Summary 100

3.7 Exercises 100

References 102

4 Steady–State Heat Conduction in One–dimension 105

4.1 Introduction 105

4.2 PlaneWalls 105

4.2.1 Homogeneous Wall 105

4.2.2 CompositeWall 107

4.2.3 Finite Element Discretization 108

4.2.4 Wall with Varying Cross–sectional Area 110

4.2.5 Plane Wall with a Heat Source: Solution by Linear Elements 112

4.2.6 Plane Wall with Heat Source: Solution by Quadratic Elements 115

4.2.7 Plane Wall with a Heat Source: Solution by Modified Quadratic Equations (Static Condensation) 117

4.3 Radial Heat Conduction in a Cylinder Wall 118

4.4 Solid Cylinder with Heat Source 120

4.5 Conduction Convection Systems 123

4.6 Summary 126

4.7 Exercises 127

References 129

5 Steady–state Heat Conduction in Multi–dimensions 131

5.1 Introduction 131

5.2 Two–dimensional Plane Problems 132

5.2.1 Triangular Elements 132

5.3 Rectangular Elements 142

5.4 Plate with Variable Thickness 145

5.5 Three–dimensional Problems 146

5.6 Axisymmetric Problems 148

5.6.1 Galerkin Method for Linear Triangular Axisymmetric Elements 150

5.7 Summary 153

5.8 Exercises 153

References 155

6 Transient Heat Conduction Analysis 157

6.1 Introduction 157

6.2 Lumped Heat Capacity System 157

6.3 Numerical Solution 159

6.3.1 Transient Governing Equations and Boundary and Initial Conditions 159

6.3.2 The GalerkinMethod 160

6.4 One–dimensional Transient State Problem 162

6.4.1 Time Discretization–Finite Difference Method (FDM) 163

6.4.2 Time Discretization–Finite ElementMethod (FEM) 168

6.5 Stability 169

6.6 Multi–dimensional Transient Heat Conduction 169

6.7 Summary 171

6.8 Exercises 171

References 173

7 Laminar Convection Heat Transfer 175

7.1 Introduction 175

7.1.1 Types of Fluid Motion Assisted Heat Transport 176

7.2 Navier–Stokes Equations 177

7.2.1 Conservation of Mass or Continuity Equation 177

7.2.2 Conservation ofMomentum 179

7.2.3 Energy Equation 183

7.3 Nondimensional Form of the Governing Equations 184

7.4 The Transient Convection–Diffusion Problem 188

7.4.1 Finite Element Solution to the Convection–Diffusion Equation 189

7.4.2 A Simple Characteristic Galerkin Method for Convection–Diffusion Equation 191

7.4.3 Extension to Multi–dimensions 197

7.5 Stability Conditions 202

7.6 Characteristic Based Split (CBS) Scheme 202

7.6.1 Spatial Discretization 208

7.6.2 Time–step Calculation 211

7.6.3 Boundary and Initial Conditions 211

7.6.4 Steady and Transient Solution Methods 213

7.7 Artificial Compressibility Scheme 214

7.8 Nusselt Number, Drag and Stream Function 215

7.8.1 Nusselt Number 215

7.8.2 Drag Calculation 216

7.8.3 Stream Function 217

7.9 Mesh Convergence 218

7.10 Laminar Isothermal Flow 219

7.11 Laminar Nonisothermal Flow 231

7.11.1 Forced Convection Heat Transfer 232

7.11.2 Buoyancy–driven Convection Heat Transfer 238

7.11.3 Mixed Convection Heat Transfer 240

7.12 Extension to Axisymmetric Problems 243

7.13 Summary 246

7.14 Exercises 247

References 249

8 Turbulent Flow and Heat Transfer 253

8.1 Introduction 253

8.1.1 Time Averaging 254

8.1.2 Relationship between , , T and T 256

8.2 Treatment of Turbulent Flows 257

8.2.1 Reynolds Averaged Navier–Stokes (RANS) 257

8.2.2 One–equation Models 258

8.2.3 Two–equation Models 259

8.2.4 Nondimensional Form of the Governing Equations 260

8.3 Solution Procedure 262

8.4 Forced Convective Flow and Heat Transfer 263

8.5 Buoyancy–driven Flow 272

8.6 Other Methods for Turbulence 275

8.6.1 Large Eddy Simulation (LES) 275

8.7 Detached Eddy Simulation (DES) and Monotonically Integrated LES (MILES)278

8.8 Direct Numerical Simulation (DNS) 278

8.9 Summary 279

References 279

9 Heat Exchangers 281

9.1 Introduction 281

9.2 LMTD and Effectiveness–NTU Methods 283

9.2.1 LMTD Method 283

9.2.2 Effectiveness NTU Method 285

9.3 Computational Approaches 286

9.3.1 System Analysis 286

9.3.2 Finite Element Solution to Differential Equations 289

9.4 Analysis of Heat Exchanger Passages . 289

9.5 Challenges 297

9.6 Summary 299

References 299

10 Mass Transfer 301

10.1 Introduction 301

10.2 Conservation of Species 302

10.2.1 Nondimensional Form 304

10.2.2 Buoyancy–driven Mass Transfer 305

10.2.3 Double–diffusive Natural Convection 306

10.3 Numerical Solution 307

10.4 TurbulentMass Transport 317

10.5 Summary  319

References 319

11 Convection Heat and Mass Transfer in Porous Media 321

11.1 Introduction 321

11.2 Generalized Porous Medium Flow Approach 324

11.2.1 Nondimensional Scales 327

11.2.2 Limiting Cases 329

11.3 Discretization Procedure 329

11.3.1 Temporal Discretization 330

11.3.2 Spatial Discretization 331

11.3.3 Semi– and Quasi–Implicit Forms 332

11.4 Nonisothermal Flows 333

11.5 PorousMedium–Fluid Interface 342

11.6 Double–diffusive Convection 347

11.7 Summary 349

References 349

12 Solidification 353

12.1 Introduction 353

12.2 Solidification via Heat Conduction 354

12.2.1 The Governing Equations 354

12.2.2 Enthalpy Formulation 354

12.3 Convection During Solidification 356

12.3.1 Governing Equations and Discretization 358

12.4 Summary 363

References 364

13 Heat and Mass Transfer in Fuel Cells 365

13.1 Introduction 365

13.1.1 Fuel Cell Types 367

13.2 Mathematical Model 368

13.2.1 Anodic and Cathodic Compartments 371

13.2.2 Electrolyte Compartment 373

13.3 Numerical Solution Algorithms 373

13.3.1 Finite ElementModeling of SOFC 374

13.4 Summary  378

References 378

14 An Introduction to Mesh Generation and Adaptive Finite Element Methods 379

14.1 Introduction 379

14.2 Mesh Generation 380

14.2.1 Advancing Front Technique (AFT) 381

14.2.2 Delaunay Triangulation 382

14.2.3 Mesh Cosmetics 387

14.3 Boundary Grid Generation 390

14.3.1 Boundary Grid for a Planar Domain 390

14.3.2 NURBS Patches 391

14.5 Simple Error Estimation and Mesh Refinement 393

14.5.1 Heat Conduction 394

14.6 Interpolation Error Based Refinement 397

14.6.2 Choice of Variables and Adaptivity 399

14.7 Summary 401

References 402

15 Implementation of Computer Code 405

15.1 Introduction 405

15.2 Preprocessing 406

15.2.1 Mesh Generation 406

15.2.2 Linear Triangular Element Data 408

15.2.3 Element Area Calculation 409

15.2.4 Shape Functions and Their Derivatives 410

15.2.5 Boundary Normal Calculation 411

15.2.6 MassMatrix and Mass Lumping 412

15.2.7 Implicit Pressure or Heat Conduction Matrix 414

15.3 Main Unit 416

15.3.1 Time–step Calculation 416

15.3.2 Element Loop and Assembly 419

15.3.3 Updating Solution 420

15.3.4 Boundary Conditions 421

15.4 Postprocessing 423

15.4.1 Interpolation of Data 424

15.5 Summary 424

References 424

A Gaussian Elimination 425

Reference 426

B Green s Lemma 427

C Integration Formulae 429

C.1 Linear Triangles  429

C.2 Linear Tetrahedron 429

D Finite Element Assembly Procedure 431

E Simplified Form of the Navier Stokes Equations 435

F Calculating Nodal Values of Second Derivatives 437

Index 439

Note: Product cover images may vary from those shown
3 of 3
Perumal Nithiarasu
Roland W. Lewis
Kankanhalli N. Seetharamu
Note: Product cover images may vary from those shown