Near-Field Optics. Theory, Instrumentation, and Applications

  • ID: 2180925
  • Book
  • 368 Pages
  • John Wiley and Sons Ltd
1 of 4
A complete guide to one of the most revolutionary technologies in the history of imaging

Near–field microscopes combine the richness of optical analysis, the noninvasive character of light, and the wide variety of sample environments of conventional microscopes with the finer spatial resolution of alternative technologies. Near–Field Optics combines an introduction to near–field optical theory with a handbook and reference for the practice and application of near–field microscopy. Michael A. Paesler and Patrick J. Moyer provide the most comprehensive presentation available on the instrumentation and operation of near–field microscopes. Writing from the viewpoint of the scientist who wants to apply these revolutionary instruments in a laboratory setting, the authors:

∗ Explain the pertinent optical theory and provide a developmental history of near–field instruments

∗ Discuss imaging theory and its application in the near–field scanning optical microscope (NSOM)

∗ Explore the optical behavior of elements that provide the near–field/far–field connection in an NSOM

∗ Provide operational how–to′s for NSOMs

∗ Examine the theory and operation of optical tunneling microscopes with special emphasis on the photon tunneling microscope (PTM)

∗ Enumerate contrast mechanisms available to the near–field microscopist

∗ Describe the application of near–field techniques in biology, materials science, surface chemistry, and information storage
Note: Product cover images may vary from those shown
2 of 4
THEORY AND INSTRUMENTATION.

Imaging.

The Tapered Optical Fiber and Other Sensing Elements.

NSOM Theory.

NSOM Instrumentation.

Optical Tunneling Microscopes.

PRACTICE.

Contrast.

Intensity.

Polarization.

Wavelength.

Amplitude and Phase.

Time.

Plasmons.

APPLICATIONS.

Surface Chemistry.

Biology.

Materials Science.

Information Storage.

Non–Visible Wavelength Instruments.

RELATED TECHNIQUES AND CONCLUSION.

Related Techniques and Unusual Configurations.

Conclusions and Future Directions.

Index.
Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
MICHAEL A. PAESLER is Professor of Physics at North Carolina State University. At the University′s Precision Engineering Center he heads a group that exploits the near–field microscope′s ability to provide spectral and temporal contrast. He has explored the optical performance and fabrication of tapered optical fibers as well as the theory of the behavior of light in the near–field.

PATRICK J. MOYER is Professor of Physics at the University of North Carolina at Charlotte. A former researcher with TopoMetrix of Santa Clara, California, he was the chief scientist responsible for the design and development of the first commercially available near–field scanning optical microscope.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll