Predictive Control of Power Converters and Electrical Drives. Wiley – IEEE

Description: The application Model Predictive Control (MPC) controls electrical energy with the use of power converters and offers a highly flexible alternative to the use of modulators and linear controllers. This new approach takes into account the discrete and nonlinear nature of the power converters and drives and promises to have a strong impact on control in power electronics in the coming decades.

Predictive Control of Power Converters and Electrical Drives provides a comprehensive overview of the general principles and current research into MPC and is ideal for engineers, specialists and researchers needing:

- a straightforward explanation of the theory and implementation of predictive control;
- analysis on classical converter control methods and electrical drives control methods;
- application examples and case studies demonstrating how control schemes have been implemented;
- practice in running their own MATLAB(R) simulations through the companion website.

With the information provided, power electronics specialists will be able to start applying this new control technique. This book will help electrical, electronics and control engineers, R&D engineers, product development engineers working in power electronics and drives, and industry engineers of power conversions and motor drives. It is also a complete reference for university researchers, graduate and senior-level undergraduate students of electrical and electronics engineering, academic control specialists, and academics in electrical drives.

URL: [external URL]

Contents:
Foreword xi
Preface xiii
Acknowledgments xv
Part One INTRODUCTION
1 Introduction 3
1.1 Applications of Power Converters and Drives 3
1.2 Types of Power Converters 5
1.2.1 Generic Drive System 5
1.2.2 Classification of Power Converters 5
1.3 Control of Power Converters and Drives 7
1.3.1 Power Converter Control in the Past 7
1.3.2 Power Converter Control Today 10
1.3.3 Control Requirements and Challenges 11
1.3.4 Digital Control Platforms 12
1.4 Why Predictive Control is Particularly Suited for Power Electronics 13
1.5 Contents of this Book 15
References 16

2 Classical Control Methods for Power Converters and Drives 17

2.1 Classical Current Control Methods 17

2.1.1 Hysteresis Current Control 18

2.1.2 Linear Control with Pulse Width Modulation or Space Vector Modulation 20

2.2 Classical Electrical Drive Control Methods 24

2.2.1 Field Oriented Control 24

2.2.2 Direct Torque Control 26

2.3 Summary 30

References 30

3 Model Predictive Control 31

3.1 Predictive Control Methods for Power Converters and Drives 31

3.2 Basic Principles of Model Predictive Control 32

3.3 Model Predictive Control for Power Electronics and Drives 34

3.3.1 Controller Design 35

3.3.2 Implementation 37

3.3.3 General Control Scheme 38

3.4 Summary 38

References 38

Part Two MODEL PREDICTIVE CONTROL APPLIED TO POWER CONVERTERS

4 Predictive Control of a Three-Phase Inverter 43

4.1 Introduction 43

4.2 Predictive Current Control 43

4.3 Cost Function 44

4.4 Converter Model 44

4.5 Load Model 48

4.6 Discrete-Time Model for Prediction 49

4.7 Working Principle 50

4.8 Implementation of the Predictive Control Strategy 50

4.9 Comparison to a Classical Control Scheme 59

4.10 Summary 63
Part Four DESIGN AND IMPLEMENTATION ISSUES OF MODEL PREDICTIVE CONTROL

10 Cost Function Selection 147
10.1 Introduction 147
10.2 Reference Following 147
10.2.1 Some Examples 148
10.3 Actuation Constraints 148
10.3.1 Minimization of the Switching Frequency 150
10.3.2 Minimization of the Switching Losses 152
10.4 Hard Constraints 155
10.5 Spectral Content 157
10.6 Summary 161

References 161

11 Weighting Factor Design 163
11.1 Introduction 163
11.2 Cost Function Classification 164
11.2.1 Cost Functions without Weighting Factors 164
11.2.2 Cost Functions with Secondary Terms 164
11.2.3 Cost Functions with Equally Important Terms 165
11.3 Weighting Factors Adjustment 166
11.3.1 For Cost Functions with Secondary Terms 166
11.3.2 For Cost Functions with Equally Important Terms 167
11.4 Examples 168
11.4.1 Switching Frequency Reduction 168
11.4.2 Common–Mode Voltage Reduction 168
11.4.3 Input Reactive Power Reduction 170
11.4.4 Torque and Flux Control 170
11.4.5 Capacitor Voltage Balancing 174
11.5 Summary 175

References 176

12 Delay Compensation 177
12.1 Introduction 177
12.2 Effect of Delay due to Calculation Time 177
12.3 Delay Compensation Method 180
12.4 Prediction of Future References 181
12.4.1 Calculation of Future References Using Extrapolation 185
12.4.2 Calculation of Future References Using Vector Angle Compensation 185
12.5 Summary 188
References 188
13 Effect of Model Parameter Errors 191
13.1 Introduction 191
13.2 Three–Phase Inverter 191
13.3 Proportional Integral Controllers with Pulse Width Modulation 192
13.3.1 Control Scheme 192
13.3.2 Effect of Model Parameter Errors 193
13.4 Deadbeat Control with Pulse Width Modulation 194
13.4.1 Control Scheme 194
13.4.2 Effect of Model Parameter Errors 195
13.5 Model Predictive Control 195
13.5.1 Effect of Load Parameter Variation 196
13.6 Comparative Results 197
13.7 Summary 201
References 201
Appendix A Predictive Control Simulation Three–Phase Inverter 203
A.1 Predictive Current Control of a Three–Phase Inverter 203
A.1.1 Definition of Simulation Parameters 207
A.1.2 MATLAB® Code for Predictive Current Control 208
Appendix B Predictive Control Simulation Torque Control of an Induction Machine Fed by a Two–Level Voltage Source Inverter 211
B.1 Definition of Predictive Torque Control Simulation Parameters 213
B.2 MATLAB® Code for the Predictive Torque Control Simulation 215
Appendix C Predictive Control Simulation Matrix Converter 219
C.1 Predictive Current Control of a Direct Matrix Converter 219
C.1.1 Definition of Simulation Parameters 221
C.1.2 MATLAB® Code for Predictive Current Control with Instantaneous Reactive Power Minimization 222
Index 227

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2181975/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form

To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information

Please verify that the product information is correct.

- Product Name: Predictive Control of Power Converters and Electrical Drives. Wiley – IEEE
- Web Address: http://www.researchandmarkets.com/reports/2181975/
- Office Code: SC

Product Format

Please select the product format and quantity you require:

Quantity

- Hard Copy (Hard Back): USD 117 + USD 31 Shipping/Handling

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information

Please enter all the information below in **BLOCK CAPITALS**

- **Title:** Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
- **First Name:** ____________________________ **Last Name:** ____________________________
- **Email Address:** * ____________________________
- **Job Title:** ____________________________
- **Organisation:** ____________________________
- **Address:** ____________________________
- **City:** ____________________________
- **Postal / Zip Code:** ____________________________
- **Country:** ____________________________
- **Phone Number:** ____________________________
- **Fax Number:** ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World