+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Smart Material Systems and MEMS. Design and Development Methodologies

  • ID: 2182284
  • Book
  • 418 Pages
  • John Wiley and Sons Ltd
1 of 3
Smart technology is a progressive field that is currently being used to address many challenges in aerospace, automotive, civil, mechanical, biomedical and communication engineering disciplines. Influenced by biological systems, smart materials are often attached to or embedded into structural systems to enable them to sense disturbances, process the information and react to it. This therefore improves the overall reliability, efficiency and sustainability of a system or structure. Now, miniaturisation has resulted in faster devices with reduced fabrication costs and the possibility of integration with electronics, thereby simplifying systems and reducing the power requirements.

This book presents a unified treatment of the design and modelling of smart material systems and Micro–Electro–Mechanical Systems (MEMS), addressing both fabrication issues and outlining important potential application areas for the technology. With numerous case studies and illustrative examples, Varadan et al. cover in detail:

  • the fundamentals of smart systems and materials characterization;
  • design principles for sensors and actuators, analysing bulk sensors, micro sensors and some commonly available devices such as gyroscopes, pressure sensors and chemical and biosensors;
  • the modelling of smart systems, including special techniques for studying MEMS– and carbon nanotube (CNT) –based sensors and actuators;
  • fabrication techniques, providing details of bulk and surface micromachining concepts for silicon–based processing of MEMS and polymer–based systems;
  • practical application issues, using smart technology to solve real world problems in a range of engineering fields.

A valuable reference for students taking courses in smart sensors, actuators and systems, Smart Material Systems and MEMS: Design and Development Methodologies is also useful for practising engineers, researchers and developers of microsystems working in industry.

Note: Product cover images may vary from those shown
2 of 3

About the Authors.


1. Introduction to Smart Systems.

1.1 Components of a smart system.

1.2 Evolution of smart materials and structures.

1.3 Application areas for smart systems.

1.4 Organization of the book.


2. Processing of Smart Materials.

2.1 Introduction.

2.2 Semiconductors and their processing.

2.3 Metals and metallization techniques.

2.4 Ceramics.

2.5 Silicon micromachining techniques.

2.6 Polymers and their synthesis.

2.7 UV radiation curing of polymers.

2.8 Deposition techniques for polymer thin films.

2.9 Properties and synthesis of carbon nanotubes.



3. Sensors for Smart Systems.

3.1 Introduction.

3.2 Conductometric sensors.

3.3 Capacitive sensors.

3.4 Piezoelectric sensors.

3.5 Magnetostrictive sensors.

3.6 Piezoresistive sensors.

3.7 Optical sensors.

3.8 Resonant sensors.

3.9 Semiconductor–based sensors.

3.10 Acoustic sensors.

3.11 Polymeric sensors.

3.12 Carbon nanotube sensors.


4. Actuators for Smart Systems.

4.1 Introduction.

4.2 Electrostatic transducers.

4.3 Electromagnetic transducers.

4.4 Electrodynamic transducers.

4.5 Piezoelectric transducers.

4.6 Electrostrictive transducers.

4.7 Magnetostrictive transducers.

4.8 Electrothermal actuators.

4.9 Comparison of actuation schemes.


5. Design Examples for Sensors and Actuators.

5.1 Introduction.

5.2 Piezoelectric sensors.

5.3 MEMS IDT–based accelerometers.

5.4 Fiber–optic gyroscopes.

5.5 Piezoresistive pressure sensors.

5.6 SAW–based wireless strain sensors.

5.7 SAW–based chemical sensors.

5.8 Microfluidic systems.



6. Introductory Concepts in Modeling.

6.1 Introduction to the theory of elasticity.

6.2 Theory of laminated composites.

6.3 Introduction to wave propagation in structures.


7. Introduction to the Finite Element Method.

7.1 Introduction.

7.2 Variational principles.

7.3 Energy functionals and variational operator.

7.4 Weak form of the governing differential equation.

7.5 Some basic energy theorems.

7.6 Finite element method.

7.7 Computational aspects in the finite element method.

7.8 Superconvergent finite element formulation.

7.9 Spectral finite element formulation.


8. Modeling of Smart Sensors and Actuators.

8.1 Introduction.

8.2 Finite element modeling of a 3–D composite laminate with embedded piezoelectric sensors and actuators.

8.3 Superconvergent smart thin–walled box beam element.

8.4 Modeling of magnetostrictive sensors and actuators.

8.5 Modeling of micro electromechanical systems.

8.6 Modeling of carbon nanotubes (CNTs).


9. Active Control Techniques.

9.1 Introduction.

9.2 Mathematical models for control theory.

9.3 Stability of control system.

9.4 Design concepts and methodology.

9.5 Modal order reduction.

9.6 Active control of vibration and waves due to broadband excitation.



10. Silicon Fabrication Techniques for MEMS.

10.1 Introduction.

10.2 Fabrication processes for silicon MEMS.

10.3 Deposition techniques for thin films in MEMS.

10.4 Bulk micromachining for silicon–based MEMS.

10.5 Silicon surface micromachining.

10.6 Processing by both bulk and surface micromachining.

10.7 LIGA process.


11. Polymeric MEMS Fabrication Techniques.

11.1 Introduction.

11.2 Microstereolithography.

11.3 Micromolding of polymeric 3–D structures.

11.4 Incorporation of metals and ceramics by polymeric processes.

11.5 Combined silicon and polymer structures.


12. Integration and Packaging of Smart Microsystems.

12.1 Integration of MEMS and microelectronics.

12.2 MEMS packaging.

12.3 Packaging techniques.

12.4 Reliability and key failure mechanisms.

12.5 Issues in packaging of microsystems.


13. Fabrication Examples of Smart Microsystems.

13.1 Introduction.

13.2 PVDF transducers.

13.3 SAW accelerometer.

13.4 Chemical and biosensors.

13.5 Polymeric fabrication of a microfluidic system.


14. Structural Health Monitoring Applications.

14.1 Introduction.

14.2 Structural health monitoring of composite wing–type structures using magnetostrictive sensors/actuators.

14.3 Assesment of damage severity and health monitoring using PZT sensors/actuators.

14.4 Actuation of DCB specimen under Mode–II dynamic loading.

14.5 Wireless MEMS IDT microsensors for health monitoring of structures and systems.


15. Vibration and Noise–Control Applications.

15.1 Introduction.

15.2 Active vibration control in a thin–walled box beam.

15.3 Active noise control of structure–borne vibration and noise in a helicopter cabin.



Note: Product cover images may vary from those shown
3 of 3


4 of 3
Vijay K. Varadan
K. J. Vinoy
S. Gopalakrishnan
Note: Product cover images may vary from those shown