+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Ecological Applications. Toward a Sustainable World

  • ID: 2240257
  • Book
  • August 2007
  • Region: Global
  • 328 Pages
  • John Wiley and Sons Ltd
1 of 3
Ecological Applications offers a progressive examination of the way ecological theory can be applied to remedy the many problems confronting us. The text moves through the levels of individual organisms, populations, communities, and ecosystems, culminating with the macroecological scale of landscape, regional, and global issues. The book is designed to grab the reader s interest with real–life problems but also to instil an understanding of the fundamentals of ecology.

Applications including species conservation, pest control, harvest management, biosecurity, restoration, and reserve design are explored in both terrestrial and aquatic settings. The focus is on ecological sustainability, but economic and sociopolitical dimensions related to the sustainable use of natural resources are also examined.

Ecological Applications is a current and comprehensive guide to the theory and practice of ecology for students and practitioners alike.

Note: Product cover images may vary from those shown
2 of 3
List of Plates.

List of Boxes.



1. Introduction Humans, Nature, and Human Nature.

1.1. Homo not–so–sapiens?.

1.1.1. Homo sapiens Just Another Species?.

1.1.2. Human Population Density and Technology Underlie Environmental Impact.

1.2. A Biodiversity Crisis.

1.2.1. The Scale of the Biodiversity Problem.

1.2.2. Biodiversity, Ecosystem Function and Ecosystem Services.

1.2.3. Drivers of Biodiversity Loss The Extinction Vortex.

1.2.4. Habitat Loss Driven from House and Home.

1.2.5. Invaders Unwanted Biodiversity.

1.2.6. Overexploitation Too Much of a Good Thing.

1.2.7. Habitat degradation Laying Waste.

1.2.8. Global climate change Life in the Greenhouse.

1.3. Toward a Sustainable Future?.

1.3.1. Ecological Applications to Conserve, Restore, and Sustain Biodiversity.

1.3.2. From an Economic Perspective Putting a Value on Nature.

1.3.3. The Sociopolitical Dimension.

Part 1: Ecological Applications At The Level Of Individual Organisms.

2. Ecological Applications of Niche Theory.

2.1. Introduction.

2.2. Unwanted Aliens Lessons from Niche Theory.

2.2.1. Ecological Niche Modeling Predicting Where Invaders will Succeed.

2.2.2. Are we Modeling Fundamental or Realized Niches?.

2.2.3. When Humans Disrupt Ecosystems and Make it Easy for Invaders.

2.3. Conservation of Endangered Species Each to Its Own Niche.

2.3.1. Monarch s Winter Palace Under Siege.

2.3.2. A Species off the Rails Translocation of the Takahe.

2.4. Restoration of Habitats Impacted by Human Activities.

2.4.1. Land Reclamation Prospecting for Species to Restore Mined Sites.

2.4.2. Agricultural Intensification Risks to Biodiversity.

2.4.3. How Much Does it Cost to Restore a Species?.

2.4.4. River Restoration Going with the Flow.

3. Life–history Theory and Management.

3.1. Introduction Using Life–history Traits to Make Management Decisions.

3.2. Species Traits as Predictors for Effective Restoration.

3.2.1. Restoring Grassland Plants A Pastoral Duty.

3.2.2. Restoring Tropical Forest Abandoned Farmland Reclaimed for Nature.

3.3. Species Traits as Predictors of Invasion Success.

3.3.1. Species Traits Predict Invasive Conifers.

3.3.2. Invasion Success The Importance of Flexibility.

3.3.3. Separating Invasions into Sequential Stages Different Traits for Each?.

3.3.4. What We Know and Don t Know About Invader Traits.

3.4. Species Traits as Predictors of Extinction Risk.

3.4.1. Niche Breadth and Flexibility Freshwater and Forest at Risk.

3.4.2. When Big isn t Best r/K Theory, Harvesting, Grazing and Pollution.

3.4.3. When Competitiveness Matters CSR Theory, Grazing and Habitat Fragmentation.

4. Dispersal, Migration and Management.

4.1. Introduction Why Species Mobility Matters.

4.2. Migration and Dispersal Lessons for Conservation.

4.2.1. For Whom the Bell Tolls The Surprising Story of a South American Bird.

4.2.2. The Ups and Downs of Panda Conservation.

4.2.3. Dispersal of a Vulnerable Aquatic Insect A Damsel in Distress.

4.2.4. Designing Marine Reserves.

4.3. Restoration and Species Mobility.

4.3.1. Behavior Management.

4.3.2. Bog Restoration Is Assisted Migration Needed for Peat s Sake?.

4.3.3. Wetland Forest Restoration.

4.4. Predicting the Arrival and Spread oInvaders.

4.4.1. The Great Lakes A Great Place for Invaders.

4.4.2. Lakes as Infectious Agents.

4.4.3. Invasion Hubs or Diffusive Spread?.

4.4.4. How to Manage Invasions under Globalization.

4.5. Species Mobility and Management of Production Landscapes.

4.5.1. Squirrels Axeman Spare that Tree.

4.5.2. Bats Axeman Cut that Track.

4.5.3. Farming the Wind The Spatial Risk oPulverizing Birds.

4.5.4. Bee Business Pollination Services of Native Bees Depend on Dispersal Distance.

Part 2: Applications at the Level of Populations.

5. Conservation of Endangered Species.

5.1. Dealing with Endangered Species A Crisis Discipline.

5.2. Assessing Extinction Risk from Correlational Data.

5.3. Simple Algebraic Models of Population Viability Analysis.

5.3.1. The Case of Fender s Blue Butterfly.

5.3.2. A Primate in Kenya How Good are the Data?.

5.4. Simulation Modeling for Population Viability Analysis.

5.4.1. An Australian Icon at Risk.

5.4.2. The Royal Catchfly A Burning Issue.

5.4.3. Ethiopian Wolves Dogged by Disease.

5.4.4. How Good is Your Population Viability Analysis?.

5.5. Conservation Genetics.

5.5.1. Genetic Rescue of the Florida Panther.

5.5.2. The Pink Pigeon Providing a Solid Foundation.

5.5.3. Reintroduction of a Red List Plant The Value of Crossing.

5.5.4. Outfoxing the Foxes of the Californian Channel Islands.

5.6. A Broader Perspective of Conservation Ecology, Economics and Sociopolitics All Matter.

5.6.1. Genetically Modified Crops Larking About with Farmland Biodiversity.

5.6.2. Diclofenac Good for Sick Cattle, Bad for Vultures.

6. Pest Management.

6.1. Introduction.

6.1.1. One Person s Pest, Another Person s Pet.

6.1.2. Eradication or Control?.

6.2. Chemical Pesticides.

6.2.1. Natural Arms Factories.

6.2.2. Take no Prisoners.

6.2.3. From Blunderbuss to Surgical Strike.

6.2.4. Cut off the Enemy s Reinforcements.

6.2.5. Changing Pest Behavior A Propaganda War.

6.2.6. When Pesticides go Wrong Target Pest Resurgence and Secondary Pests.

6.2.7. Widespread Effects of Pesticides on Nontarget Organisms, Including People.

6.3. Biological Control.

6.3.1. Importation Biological Control A Question of Scale.

6.3.2. Conservation Biological Control Get Natural Enemies to do the Work.

6.3.3. Inoculation Biological Control Effective in Glasshouses but Rarely in Field Crops.

6.3.4. Inundation Biological Control Using Fungi, Viruses, Bacteria and Nematodes.

6.3.5. When Biological Control Goes Wrong.

6.4. Evolution of Resistance and its Management.

6.5. Integrated Pest Management (IPM).

6.5.1. IPM against Potato Tuber Moths in New Zealand.

6.5.2. IPM against an Invasive Weed in Australia.

7. Harvest Management.

7.1. Introduction.

7.1.1. Avoiding the Tragedy of the Commons.

7.1.2. Killing Just Enough Not Too Few, Not Too Many.

7.2. Harvest Management In Practice Maximum Sustainable Yield (MSY) Approaches.

7.2.1. Management by Fixed Quota Of Fish and Moose.

7.2.2. Management by Fixed Effort Of Fish and Antelopes.

7.2.3. Management by Constant Escapement In Time.

7.2.4. Management by Constant Escapement In Space.

7.2.5. Evaluation of the MSY Approach The Role of Climate.

7.2.6. Species that are Especially Vulnerable When Rare.

7.2.7. Ecologist s Role in the Assessment of MSY.

7.3. Harvest Models that Recognize Population Structure.

7.3.1. Dynamic Pool Models in Fisheries Management Looking After the Big Mothers.

7.3.2. Forestry Axeman, Spare which Tree?.

7.3.3. A Forest Bird of Cultural Importance.

7.4. Evolution of Harvested Populations Of Fish and Bighorn Rams.

7.5. A Broader View of Harvest Management Adding Economics to Ecology.

7.6. Adding a Sociopolitical Dimension to Ecology and Economics.

7.6.1. Factoring in Human Behavior.

7.6.2. Confronting Political Realities.

Part 3: Applications at the Level of Communities and Ecosystems.

8. Succession and Management.

8.1. Introduction.

8.2. Managing Succession for Restoration.

8.2.1. Restoration Timetables for Plants.

8.2.2. Restoration Timetable for Animals.

8.2.3. Invoking the Theory of Competition Colonization Trade–offs.

8.2.4. Invoking Successional–niche Theory.

8.2.5. Invoking Facilitation Theory.

8.2.6. Invoking Enemy–interaction Theory.

8.3. Managing Succession for Harvests.

8.3.1. Benzoin Gardening in Sumatra.

8.3.2. Aboriginal Burning Enhances Harvests.

8.4. Using Succession to Control Invasions.

8.4.1. Grassland.

8.4.2. Forest.

8.5. Managing Succession for Species Conservation.

8.5.1. When Early Succession Matters Most A Hare–Restoring Formula for Lynx.

8.5.2. Enforcing a Successional Mosaic First Aid for Butterflies.

8.5.3. When Late Succession Matters Most Range Finding for Tropical Birds.

8.5.4. Controlling Succession in an Invader–dominated Community.

8.5.5. Nursing a Valued Plant Back to Cultural Health.

9. Applications from Food–web and Ecosystem Theory.

9.1. Introduction.

9.2. Food–web Theory and Human Disease Risk.

9.3. Food Webs and Harvest Management.

9.3.1. Who gets Top Spot in the Abalone Food Web Otters or Humans?.

9.3.2. Food–web Consequences of Harvesting Fish From Tuna to Tiddlers.

9.4. Food Webs and Conservation Management.

9.5. Ecosystem Consequences of Invasions.

9.5.1. Ecosystem Consequences of Freshwater Invaders.

9.5.2. Ecosystem Effects of Invasive Plants Fixing the Problem.

9.6. Ecosystem Approaches to Restoration First Aid by Parasites and Sawdust.

9.7. Sustainable Agroecosystems.

9.7.1. Stopping Caterpillars Eating the Broccoli So That People Can.

9.7.2. Managing Agriculture to Minimize Fertilizer Input and Nutrient Loss.

9.7.3. Constructing Wetlands to Manage Water Quality.

9.7.4. Managing Lake Eutrophication.

9.8. Ecosystem Services and Ecosystem Health.

9.8.1. The value of Ecosystem Services.

9.8.2. Ecosystem Health of Forests With All their Mites.

9.8.3. Ecosystem Health in an Agricultural Landscape Bats Have a Ball.

9.8.4. Ecosystem Health of Rivers It s What We Make It.

9.8.5. Ecosystem Health of a Marine Environment.

Part 4: Applications at the Regional and Global Scales.

10. Landscape Management.

10.1. Introduction.

10.2. Conservation of Metapopulations.

10.2.1. The Emu–wren Making the Most of the Conservation Dollar.

10.2.2. The Wood Thrush Going Down the Sink.

10.2.3. The Problem With Large Carnivores Connecting With Grizzly Bears.

10.3. Landscape Harvest Management.

10.3.1. Marine Protected Areas.

10.3.2. A Peruvian Forest Successional Mosaic Patching a Living Together.

10.4. A Landscape Perspective on Pest Control.

10.4.1. Plantation Forestry in the Landscape.

10.4.2. Horticulture in the Landscape.

10.4.3. Arable Farming in the Landscape.

10.5. Restoration Landscapes.

10.5.1. Reintroduction of Vultures What a Carrion.

10.5.2. Restoring Farmed Habitat Styled for Hares.

10.5.3. Old is Good Willingness to pay for forest improvement.

10.5.4. Cityscape Ecology Biodiversity in Berlin.

10.6. Designing Reserve Networks for Biodiversity Conservation.

10.6.1. Complementarity Selecting Reserves for Fish Biodiversity.

10.6.2. Irreplaceability Selecting Reserves in the Cape Floristic Region.

10.7. Multipurpose Reserve Design.

10.7.1. Marine Zoning An Italian Job.

10.7.2. A Marine Zoning Plan for New Zealand Gifts, Gains and China Shops.

10.7.3. Managing an Agricultural Landscape A Multidisciplinary Endeavor.

11. Dealing with Global Climate Change.

11.1. Introduction.

11.2. Climate Change Predictions Based on the Ecology of Individual Organisms.

11.2.1. Niche Theory and Conservation What a Shame Mountains are Conical.

11.2.2. Niche Theory and Invasion Risk Nuisance on the Move.

11.2.3. Life–history Traits and the Fate of Species For Better or for Worse.

11.3. Climate Change Predictions Based on the Theory of Population Dynamics.

11.3.1. Species Conservation The Bear Essentials.

11.3.2. Pest Control More or Less of a Problem?.

11.3.3. Harvesting Fish in Future Cod Willing.

11.3.4. Forestry A Boost for Developing Countries?.

11.4. Climate Change Predictions Based on Community and Ecosystem Interactions.

11.4.1. Succession New Trajectories and End Points.

11.4.2. Food–web Interactions Dengue Downunder.

11.4.3. Ecosystem Services You Win Some, You Lose Some.

11.5. A Landscape Perspective Nature Reserves Under Climate Change.

11.5.1. Mexican Cacti Reserves in the Wrong Place.

11.5.2. Fairy Shrimps A Temporary Setback.


Note: Product cover images may vary from those shown
3 of 3


4 of 3
I think this text will be extremely useful and popular with the students The overall tone of the book is lively, warmly humorous, engaging, and clear.
Dr Anita Diaz, Bournemouth University

This new text provides information on the very topical subject of sustainability and further shows how ecological theories and techniques can be applied to conservation and management decisions I have been reorganizing my course to more closely follow the structure laid out in this book because I think it is a logical way to teach ecology. Dr Bethan Wood, University of Glasgow

I like the organization of the book I also like how Townsend has emphasized the applied aspects and placed the ecological basics in boxes. Realistically, as Townsend states, if a student only takes one ecology course, it should be one that emphasizes applied ecology. What a great and long–overdue approach. Dr James Houpis, California State University, Chico

This is the first textbook that I have read with an organization that emphasizes the contemporary application of major conceptual paradigms in ecology This textbook provides all that is needed in teaching undergraduate students the essential relationship linking ecological theory with natural resource management. Dr Eric Dibble, Mississippi State University

Note: Product cover images may vary from those shown