+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

# Stormwater Management for Land Development. Methods and Calculations for Quantity Control

• ID: 2326483
• Book
• 392 Pages
• John Wiley and Sons Ltd
1 of 4
Introductory guide to hydraulics, hydrology, and stormwater management design

Stormwater Management for Land Development is a unique, much–needed book on developing stormwater management plans that only requires readers to understand algebra, trigonometry, and geometry. Beginning with the fundamentals, it walks readers through the ABCs of fluid mechanics and hydrology and presents practical methods and designs to control stormwater.

Useful to the growing group of professional surveyors and engineers who may not have taken fluid mechanics or hydrology courses, Stormwater Management for Land Development features:

• Sections on elementary fluid mechanics including statics, dynamics, and open channel flow
• Sections on practical hydrology including design rainfall, travel time, and runoff methods
• Material on NRCS/SCS unit hydrograph and TR–55 tabular hydrograph procedures, with reference to the latest WinTR–55 variant
• Design methods for stormwater conveyance, including storm sewer, culvert, and open channel designs
• A detailed procedure for sizing and designing a multiple stage outlet structure for multiple event detention requirements
• More than seventy–five example problems illustrating fluid flow and hydrology calculation methods
• Review problems at the end of most chapters

With more than 150 helpful illustrations, Stormwater Management for Land Development is the most comprehensive, basic guide to hydraulics, hydrology, and stormwater management design methods for quantity control.

Note: Product cover images may vary from those shown
2 of 4
PREFACE.

ACKNOWLEDGMENTS.

1 INTRODUCTION TO STORMWATER MANAGEMENT.

1.1 Introduction.

1.2 Effect of Land Development.

1.3 Stormwater Design Criteria.

1.4 Comprehensive and Innovative Design.

1.5 Book Organization.

2 FLUID PROPERTIES AND BASIC STATICS.

2.1 Introduction.

2.2 Units.

2.3 Fluid Properties.

2.4 Pressure.

2.5 Forces on Submerged Objects.

2.6 Buoyant Force.

3 FLUID FLOW.

3.1 Introduction.

3.2 Flow Rate.

3.3 Conservation of Mass.

3.4 Energy Methods.

3.5 Bernoulli Equation.

3.6 Energy Losses.

3.7 General Energy Equation.

3.8 The Orifice.

4 OPEN CHANNEL FLOW.

4.1 Introduction.

4.2 Flow Classifications.

4.3 Hydraulic Radius and Depth.

4.4 Flow Behavior.

4.5 Steady Uniform Flow.

4.6 Specific Energy and Critical Depth.

4.7 Channel Sizing.

4.8 Circular Conduits Flowing Full or Partially Full.

4.9 The Weir.

5 HYDROLOGY, WATERSHEDS, AND SOILS.

5.1 Introduction.

5.2 The Hydrologic Cycle and Water Budget.

5.3 Watersheds.

5.4 Soils and Infiltration.

5.5 Watershed versus Site Hydrology.

6 RAINFALL.

6.1 Introduction.

6.2 Rainfall Characteristics.

6.3 VDF and IDF Charts.

6.4 Design Storms.

7 TRAVEL TIME.

7.1 Introduction.

7.2 Time of Concentration.

7.3 Sheet Flow.

7.4 Concentrated Flow.

7.5 Mixed Sheet and Concentrated Flow.

7.6 Channel or Pipe Flow.

7.7 Segmental Flow Analysis.

7.8 NRCS Segmental Method.

7.9 NRCS Lag Equation.

7.10 Comparison of Methods.

8 RUNOFF DEPTH AND PEAK FLOW.

8.1 Introduction.

8.2 Runoff Curve Number Method.

8.3 NRCS Graphical Peak Discharge Method.

8.4 Rational Peak Flow.

9 HYDROGRAPHS.

9.1 Introduction.

9.2 Unit Hydrograph Concepts.

9.3 NRCS Dimensionless Unit Hydrograph.

9.4 Delmarva Unit Hydrograph.

9.5 NRCS Tabular Hydrograph.

9.6 Rational Hydrograph.

10 ROUTING METHODS.

10.1 Introduction.

10.2 Channel Routing.

10.3 Muskingum Channel Routing.

10.4 Muskingum–Cunge Channel Routing.

10.5 Modified Puls Basin Routing.

11 DRAINAGE CONVEYANCE AND CONTROL.

11.1 Introduction.

11.2 Swales and Open Channels.

11.3 Storm Sewer Design.

11.4 Culverts.

12 MULTIPLE–EVENT DETENTION DESIGN.

12.1 Introduction.

12.2 Detention Volume Estimates.

12.3 Multiple–Stage Outlet Flow Analysis.

12.4 Storage and Outlet Design Procedure.

12.5 Design Example.

APPENDIX A: DEVELOPMENT OF THE MANNING EQUATION.

APPENDIX B: DEVELOPMENT OF THE MUSKINGUM ROUTING EQUATIONS.

APPENDIX C: DETAILED CALCULATIONS FOR EXAMPLE 11.4.

APPENDIX D: MOODY DIAGRAM.

INDEX.

Note: Product cover images may vary from those shown
3 of 4