Description:
Explores the impact of the latest breakthroughs in cluster SIMS technology

Cluster secondary ion mass spectrometry (SIMS) is a high spatial resolution imaging mass spectrometry technique, which can be used to characterize the three-dimensional chemical structure in complex organic and molecular systems. It works by using a cluster ion source to sputter desorb material from a solid sample surface. Prior to the advent of the cluster source, SIMS was severely limited in its ability to characterize soft samples as a result of damage from the atomic source. Molecular samples were essentially destroyed during analysis, limiting the method's sensitivity and precluding compositional depth profiling. The use of new and emerging cluster ion beam technologies has all but eliminated these limitations, enabling researchers to enter into new fields once considered unattainable by the SIMS method.

With contributions from leading mass spectrometry researchers around the world, *Cluster Secondary Ion Mass Spectrometry: Principles and Applications* describes the latest breakthroughs in instrumentation, and addresses best practices in cluster SIMS analysis. It serves as a compendium of knowledge on organic and polymeric surface and in-depth characterization using cluster ion beams. It covers topics ranging from the fundamentals and theory of cluster SIMS, to the important chemistries behind the success of the technique, as well as the wide-ranging applications of the technology. Examples of subjects covered include:

- Cluster SIMS theory and modeling
- Cluster ion source types and performance expectations
- Cluster ion beams for surface analysis experiments
- Molecular depth profiling and 3-D analysis with cluster ion beams
- Specialty applications ranging from biological samples analysis to semiconductors/metals analysis
- Future challenges and prospects for cluster SIMS

This book is intended to benefit any scientist, ranging from beginning to advanced in level, with plenty of figures to help better understand complex concepts and processes. In addition, each chapter ends with a detailed reference set to the primary literature, facilitating further research into individual topics where desired. *Cluster Secondary Ion Mass Spectrometry: Principles and Applications* is a must-have read for any researcher in the surface analysis and/or imaging mass spectrometry fields.

Contents:

Contributors xi

About the Editor xiii

1 AN INTRODUCTION TO CLUSTER SECONDARY ION MASS SPECTROMETRY (CLUSTER SIMS) 1
Christine M. Mahoney and Greg Gillen

1.1 Secondary Ion Mass Spectrometry in a Nutshell 2

1.1.1 SIMS Imaging 4

1.1.2 SIMS Depth Profiling 4

1.2 Basic Cluster SIMS Theory 5

1.3 Cluster SIMS: An Early History 6

1.3.1 Nonlinear Sputter Yield Enhancements 6

1.3.2 Molecular Depth Profiling 7

1.4 Recent Developments 8
2 CLUSTER SIMS OF ORGANIC MATERIALS: THEORETICAL INSIGHTS 13
Arnaud Delcorte, Oscar A. Restrepo, and Bartlomiej Czerwinski

2.1 Introduction 13

2.2 Molecular Dynamics Simulations of Sputtering with Clusters 15

2.2.1 The Cluster Effect 15

2.2.2 Computer Simulations and the Molecular Dynamics Experiment 18

2.2.3 Light and Heavy Element Clusters, and the Importance of Mass Matching 20

2.2.4 Structural Effects in Organic Materials 21

2.2.4.1 Amorphous Molecular Solids and Polymers 21

2.2.4.2 Organic Crystals 26

2.2.4.3 Thin Organic Layers on Metal Substrates 28

2.2.4.4 Hybrid Metal Organic Samples 32

2.2.5 Induced Chemistry 34

2.2.6 Multiple Hits and Depth Profiling 36

2.2.7 From Small Polyatomic Projectiles to Massive Clusters 38

2.2.7.1 Light-Element Clusters 38

2.2.7.2 Large Argon Clusters 41

2.2.7.3 Massive Gold Clusters 45

2.3 Other Models 46

2.3.1 Analytical Models: From Linear Collision Cascades to Fluid Dynamics 46

2.3.2 Recent Developments and Hybrid Approaches 47

2.4 Conclusions 50

Acknowledgments 51

References 51

3 ION SOURCES USED FOR SECONDARY ION MASS SPECTROMETRY 57
Albert J. Fahey

3.1 Introduction 57

3.2 Research Needs that have Influenced the Development of Primary Ion Sources for Sputtering 58

3.3 Functional Aspects of Various Ion Sources 59
5.3 Depth Profiling in Heterogeneous Systems 123
5.3.1 Introduction 123
5.3.2 Quantitative Depth Profiling 125
5.3.3 Reconstruction of 3D Images 127
5.3.4 Matrix Effects in Heterogeneous Systems 128

5.4 Erosion Dynamics Model of Molecular Sputter Depth Profiling 130
5.4.1 Parent Molecule Dynamics 131
5.4.2 Constant Erosion Rate 134
5.4.3 Fluence–Dependent Erosion Rate 136
5.4.4 Using Mass Spectrometric Signal Decay to Measure Damage Parameters 138
5.4.5 Surface Transients 141
5.4.6 Fragment Dynamics 141
5.4.7 Conclusions 145

5.5 The Chemistry of Atomic Ion Beam Irradiation in Organic Materials 146
5.5.1 Introduction 146
5.5.2 Understanding the Basics of Ion Irradiation Effects in Molecular Solids 146
5.5.3 Ion Beam Irradiation and the Gel Point 147
5.5.4 The Chemistry of Cluster Ion Beams 150
5.5.5 Chemical Structure Changes and Corresponding Changes in Depth Profile Shapes 152

5.6 Optimization of Experimental Parameters for Organic Depth Profiling 156
5.6.1 Introduction 156
5.6.2 Organic Delta Layers for Optimization of Experimental Parameters 157
5.6.3 Sample Temperature 159
5.6.4 Understanding the Role of Beam Energy During Organic Depth Profiling 167
5.6.5 Optimization of Incidence Angle 171
5.6.6 Effect of Sample Rotation 174
5.6.7 Ion Source Selection 178
5.6.7.1 SF + 5 and Other Small Cluster Ions 178
5.6.7.2 C n+ 60 and Similar Carbon Cluster Sources 179
5.6.7.3 The Gas Cluster Ion Beam (GCIB) 180
5.6.7.4 Low Energy Reactive Ion Beams 188
5.6.7.5 Electrospray Droplet Impact (EDI) Source for SIMS 189
7.4 Development of Cluster SIMS for Depth Profiling Analysis 255
7.4.1 CF + 3 Primary Ion Beams 255
7.4.2 NO + 2 and O + 3 Primary Ion Beams 256
7.4.3 SF + 5 Polyatomic Primary Ion Beams 257
7.4.4 CSC 6 and C 8 Depth Profiling 258
7.4.5 Os3(CO)12 and Ir4(CO)12 Primary Ion Beams 262
7.4.6 C + 60 Primary Ion Beams 263
7.4.7 Massive Gaseous Cluster Ion Beams 265
7.5 Conclusions and Future Prospects 266
References 266

8 CLUSTER TOF–SIMS IMAGING AND THE CHARACTERIZATION OF BIOLOGICAL MATERIALS 269
John Vickerman and Nick Winograd
8.1 Introduction 269
8.2 The Capabilities of TOF–SIMS for Biological Analysis 270
8.3 New Hybrid TOF–SIMS Instruments 270
8.3.1 Introduction 270
8.3.2 Benefits of New DC Beam Technologies 271
8.4 Challenges in the Use of TOF–SIMS for Biological Analysis 273
8.4.1 Sample Handling of Biological Samples for Analysis in Vacuum 273
8.4.2 Analysis is Limited to Small to Medium Size Molecules 274
8.4.3 Ion Yields Limit Useful Spatial Resolution for Molecular Analysis to not Much Better than 1 m 275
8.4.4 Matrix Effects Inhibit Application in Discovery Mode and Greatly Complicates Quantification 275
8.4.5 The Complexity of Biological Systems can Result in Data Sets that Need Multivariate Analysis (MVA) to Unravel 276
8.5 Examples of Biological Studies Using Cluster–TOF–SIMS 276
8.5.1 Analysis of Tissue 277
8.5.2 Drug Location in Tissue 285
8.5.3 Microbial Mat Surface and Subsurface Analysis in Streptomyces 289
8.5.4 Cells 291
8.5.5 Depth Scale Measurement 302
8.5.6 High Throughput Biomaterials Characterization 306
8.6 Final Thoughts and Future Directions 310
9 FUTURE CHALLENGES AND PROSPECTS OF CLUSTER SIMS 313
Peter Williams and Christine M. Mahoney

9.1 Introduction 313
9.2 The Cluster Niche 314
9.3 Cluster Types 314
9.4 The Challenge of Massive Molecular Ion Ejection 315
 9.4.1 Comparing with MALDI: The Gold Standard 316
 9.4.2 Particle Impact Techniques 317
9.5 Ionization 318
 9.5.1 Preformed Ions 319
 9.5.2 Radical Ions and Ion Fragments 319
 9.5.3 Ionization Processes for Massive Clusters 320
9.6 Matrix Effects and Challenges in Quantitative Analysis 321
9.7 SIMS Instrumentation 322
 9.7.1 Massive Cluster Ion Source Technology 323
9.8 Prospects for Biological Imaging 324
9.9 Conclusions 325
References 326
Index 329

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2330686/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2330686/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS.

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Email Address:</td>
<td>* ___________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>City:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>____________________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World