Somatic Genome Variation

Description:
A comprehensive review and integration of cutting-edge research worldwide that is revolutionizing science’s understanding of genetic variation and inheritance.

Somatic Genome Variation in Animals, Plants, and Microorganisms provides a wide-ranging review of one of the most exciting and promising areas of genomics research. Featuring contributions from a team of distinguished researchers from around the world, it summarizes the growing body of evidence for developmental and environmental genome variation in microorganisms, plants, and animals while offering authoritative interpretations of identified genome variations.

Research currently underway at laboratories worldwide has begun to overturn many fixed beliefs about the nature of somatic genomes. For example, it has long been held that, except for epigenetic variation and occasional mutations caused by external mutagens, somatic cells are genetically identical and contribute nothing to inheritance; that gene transcript abundance is determined purely by promoter activity and RNA stability; and that clones have the same genome. The evidence assembled in this book challenges those assumptions, shedding new light on changes that occur to primary nucleotide sequences and ploidy of nuclear and cytoplasmic genomes during somatic development. The authors explore somatic genome variation, update various basic concepts in genetics and breeding, consider the implications of somatic genome variation for human health and agriculture, and propose an updated synthesis of inheritance supported by the evidence.

- Provides an updated view of somatic genomes and fundamental genetic theories while also offering interpretations of somatic genome variation
- Features wide-ranging coverage of developments at the forefront of one of today’s most fascinating fields of research
- Increases our understanding of genetic variation that occurs during development and in response to environment
- Authored by a global team of experts in the field it presents up-to-date coverage of somatic genomes and genetic theories

Somatic Genome Variation in Animals, Plants, and Microorganisms is an important source of information and inspiration for geneticists, bioinformaticians, biologists, plant scientists, crop scientists, and microbiologists, as well as biomedical researchers.

Contents:
List of Contributors xv
Preface and Introduction xix
Acknowledgments xxi
About the Editor xxiii
Part I Somatic Genome Variation in Animals and Humans 1
1 Polyploidy in Animal Development and Disease 3
 Jennifer L. Bandura and Norman Zielke
 1.1 Introduction 3
 1.2 Mechanisms Inducing Somatic Polyploidy 4
 1.3 The Core Cell Cycle Machinery 8
 1.4 Genomic Organization of Polyploid Cells 9
1.5 Endoreplication: An Effective Tool for Post–Mitotic Growth and Tissue Regeneration 10
1.6 Initiation of Endoreplication in Drosophila 11
1.7 Mechanisms of Endocycle Oscillations in Drosophila 15
1.8 Gene Amplification in Drosophila Follicle Cells 17
1.9 Endocycle Entry in the Trophoblast Lineage 19
1.10 Mechanisms of Endocycle Oscillations in Trophoblast Giant Cells 22
1.11 Cardiomyocytes 23
1.12 Hepatocytes 25
1.13 Megakaryocytes 28
1.14 Concluding Remarks 30
Acknowledgments 31
References 31

2 Large–Scale Programmed Genome Rearrangements in Vertebrates 45
Jeramiah J. Smith
2.1 Introduction 45
2.1 Hagfish 46
2.3 Sea Lamprey 48
2.4 Zebra Finch 48
2.5 Emerging Themes and Directions 49
References 51

3 Chromosome Instability in Stem Cells 55
Paola Rebuzzini, Maurizio Zuccotti, Carlo Alberto Redi and Silvia Garagna
3.1 Introduction 55
3.2 Pluripotent Stem Cells 56
3.3 Somatic Stem Cells 58
3.4 Mechanisms of Chromosomal Instability 59
3.5 Mechanisms of Chromosomal Instability in Stem Cells 63
References 63

Part II Somatic Genome Variation in Plants 75

4 Mechanisms of Induced Inheritable Genome Variation in Flax 77
Christopher A. Cullis
4.1 Introduction 77
4.2 Restructuring the Flax Genome 79
7.8 Concluding Remarks 147

References 148

Part III Somatic Genome Variation in Microorganisms 165

8 RNA–Mediated Somatic Genome Rearrangement in Ciliates 167
 John R. Bracht

8.1 Introduction 168

8.2 Ciliates: Ubiquitous Eukaryotic Microorganisms with a Long Scientific History 168

8.3 Two-S Company: Nuclear Dimorphism in Ciliates 170

8.4 Paramecium: Non-Mendelian Inheritance Comes to Light 171

8.5 Tetrahymena and the Origin of the scanRNA Model 173

8.6 Small RNAs in Stylonychia and Oxytricha 175

8.7 Long Noncoding RNA Templates in Genome Rearrangement 176

8.8 Long Noncoding RNA: An Interface for Short Noncoding RNA 177

8.9 Short RNA–Mediated Heterochromatin Formation and DNA Elimination 179

8.10 Transposable Elements and the Origins of Genome Rearrangements 182

8.11 Transposons, Phase Variation, and Programmed Genome Engineering in Bacteria 185

8.12 Transposases, Noncoding RNA, and Chromatin Modifications in VDJ Recombination of Vertebrates 186

8.13 Concluding Remarks: Ubiquitous Genome Variation, Transposons, and Noncoding RNA 187

Acknowledgments 187

References 187

9 Mitotic Genome Variations in Yeast and Other Fungi 199
 Adrianna Skoneczna and Marek Skoneczny

9.1 Introduction 199

9.2 The Replication Process as a Possible Source of Genome Instability 200

9.3 Post-Replicative Repair (PRR) or Homologous Recombination (HR) Are Responsible for Error-Free and Error-Prone Repair of Blocking Lesions and Replication Stall-Borne Problems 219

9.4 Ploidy Maintenance and Chromosome Integrity Mechanisms 229

9.5 Concluding Remarks 234

References 235

Part IV General Genome Biology 251

10 Genome Variation in Archaeans, Bacteria, and Asexually Reproducing Eukaryotes 253
 Xiu-Qing Li

10.1 Introduction 254

10.2 Chromosome Number in Prokaryote Species 254
10.3 Genome Size Variation in Archaeans and Bacteria 255
10.4 Archaeal and Bacterial Genome Size Distribution 256
10.5 Genomic GC Content in Archaeans, Bacteria, Fungi, Protists, Plants, and Animals 257
10.6 Correlation between GC Content and Genome or Chromosome Size 259
10.7 Genome Size and GC-Content Variation in Primarily Asexually Reproducing Fungi 260
10.8 Variation of Gene Direction 263
10.9 Concluding Remarks 263
Acknowledgments 264

References 264

11 RNA Polyadenylation Site Regions: Highly Similar in Base Composition Pattern but Diverse in Sequence A Combination Ensuring Similar Function but Avoiding Repetitive–Regions–Related Genomic Instability 267
Xiu–Qing Li and Donglei Du

11.1 General Introduction to Gene Number, Direction, and RNA Polyadenylation 268
11.2 Base Selection at the Poly(A) Tail Starting Position 269
11.3 Most Frequent Upstream Motifs in Microorganisms, Plants, and Animals 271
11.4 Motif Frequencies in the Whole Genome 273
11.5 The Top 20 Hexamer Motifs in the Poly(A) Site Region in Humans 273
11.6 Polyadenylation Signal Motif Distribution 273
11.7 Alternative Polyadenylation 275
11.8 Base Composition of 3’ UTR in Plants and Animals 276
11.9 Base Composition Comparison between 3’ UTR and Whole Genome 276
11.10 Base Composition of 3’ COR in Plants and Animals 277
11.11 Base Composition Pattern of the Poly(A) Site Region in Protists 278
11.12 Base Composition Pattern of the Poly(A) Site Region in Plants 280
11.13 Base Composition Pattern of the Poly(A) Site Region in Animals 280
11.14 Comparison of Poly(A) Site Region Base Composition Patterns in Plants and Animals 280
11.15 Common U–A–U–A–U Base Abundance Pattern in the Poly(A) Site Region in Fungi, Plants, and Animals 284
11.16 Difference between the Most Frequent Motifs and Seqlogo–Showed Most Frequent Bases 284
11.17 RNA Structure of the Poly(A) Site Region 286
11.18 Low Conservation in the Overall Nucleotide Sequence of the Poly(A) Site Region 286
11.19 Poly(A) Site Region Stability and Somatic Genome Variation 286
11.20 Concluding Remarks 287
Acknowledgments 288
References 288

12 Insulin Signaling Pathways in Humans and Plants 291
Xiu Qing Li and Tim Xing

12.1 Introduction 291
12.2 Ranking of the Insulin Signaling Pathway and its Key Proteins 293
12.3 Diseases Caused by Somatic Mutations of the PI3K, PTEN, and AKT Proteins in the Insulin Signaling Pathway 293
12.4 Plant Insulin and Medical Use 295
12.5 Role of the Insulin Signaling Pathway in Regulating Plant Growth 295
12.6 Concluding Remarks 295
References 296

13 Developmental Variation in the Nuclear Genome Primary Sequence 299
Xiu-Qing Li

13.1 Introduction 299
13.2 Genetic Mutation, DNA Damage and Protection, and Gene Conversion in Somatic Cells 300
13.3 Programmed Large-Scale Variation in Primary DNA Sequences in Somatic Nuclear Genome 302
13.4 Generation of Antibody Genes in Animals through Somatic Genome Variation 303
13.5 Developmental Variation in Primary DNA Sequences in the Somatic Cells of Plants 303
13.6 Heritability and Stability of Developmentally Induced Variation in the Somatic Nuclear Genome in Plants 303
13.7 Concluding Remarks 304
References 305

14 Ploidy Variation of the Nuclear, Chloroplast, and Mitochondrial Genomes in Somatic Cells 309
Xiu Qing Li, Benoit Bizimungu, Guodong Zhang and Huaijun Si

14.1 Introduction 310
14.2 Nuclear Genome in Somatic Cells 311
14.3 Plastid Genome Variation in Somatic Cells 317
14.4 Mitochondrial Genome in Somatic Cells 320
14.5 Organelle Genomes in Somatic Hybrids 324
14.6 Effects of Nuclear Genome Ploidy on Organelle Genomes 325
14.7 Concluding Remarks 326
Acknowledgments 326
References 326
15 Molecular Mechanisms of Somatic Genome Variation 337
Xiu–Qing Li

15.1 Introduction 338
15.2 Mutation of Genes Involved in the Cell Cycle, Cell Division, or Centromere Function 338
15.3 DNA Damage 338
15.4 Variation in Induction and Activity of Radical–Scavenging Enzymes 339
15.5 DNA Cytosine Deaminases 340
15.6 Variation in Protective Roles of Pigments against Oxidative Damage 340
15.7 RNA–Templated DNA Repair 341
15.8 Errors in DNA Repair 341
15.9 RNA–Mediated Somatic Genome Rearrangement 342
15.10 Repetitive DNA Instability 342
15.11 Extracellular DNA 343
15.12 DNA Transposition 343
15.13 Somatic Crossover and Gene Conversion 343
15.14 Molecular Heterosis 344
15.15 Genome Damage Induced by Endoplasmic Reticulum Stress 344
15.16 Telomere Degeneration 344
15.17 Concluding Remarks 344

References 345

16 Hypotheses for Interpreting Somatic Genome Variation 351
Xiu–Qing Li

16.1 Introduction 352
16.2 Cell–Specific Accumulation of Somatic Genome Variation in Somatic Cells 352
16.3 Developmental Age and Genomic Network of Reproductive Cells 353
16.4 Genome Generation Cycle of Species 353
16.5 Somatic Genome Variation and Tissue–Specific Requirements during Growth or Development 354
16.6 Costs and Benefits of Somatic Genome Variation 354
16.7 Hypothesis on the Existence of a Primitive Stage in both Animals and Plants 355
16.8 Sources of Genetic Variation from in Vitro Culture Propagation 357
16.9 Hypothesis that Heterosis Is Created by Somatic Genome Variation 357
16.10 Genome Stability through Structural Similarity and Sequence Dissimilarity 358
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- Product Name: Somatic Genome Variation
- Web Address: http://www.researchandmarkets.com/reports/2505235/
- Office Code: SC

Product Format
Please select the product format and quantity you require:

- Quantity: Hard Copy (Hard Back): USD 217 + USD 30 Shipping/Handling

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World