Photonics. Photonics Technology and Instrumentation. Volume 3. A Wiley–Science Wise Co–Publication

  • ID: 2616966
  • Book
  • 544 Pages
  • John Wiley and Sons Ltd
1 of 4

Discusses the basic physical principles underlying the technology instrumentation of photonics

This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light–Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid–State Lighting; Wavelength Conversion
  • Comprehensive and accessible coverage of the whole of modern photonics
  • Emphasizes processes and applications that specifically exploit photon attributes of light
  • Deals with the rapidly advancing area of modern optics
  • Chapters are written by top scientists in their field
Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

David L. Andrews leads research on fundamental molecular photonics and energy transport, optomechanical forces and nonlinear optical phenomena. He has over 160 research papers and also eight books to his name – including the widely adopted textbook Lasers in Chemistry. The current focus of his research group is on novel mechanisms for optical nanomanipulation and switching, and light–harvesting in nanostructured molecular systems. The group enjoys strong international links, particularly with groups in Canada, Lithuania, New Zealand and the United States. Andrews is a Fellow of the Royal Society of Chemistry, and a Fellow of the Institute of Physics, and he is the inaugural Chair of the SPIE Nanotechnology Technical Group.
READ MORE
Note: Product cover images may vary from those shown
2 of 4

List of Contributors ix

Preface xi

1 Solid–State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems 1M. H. Crawford, J. J. Wierer, A. J. Fischer, G. T. Wang, D. D. Koleske, G. S. Subramania, M. E. Coltrin, R. F. Karlicek, Jr., and J. Y. Tsao

1.1 A Brief History of SSL, 1

1.2 Beyond the State–of–the–Art: Smart and Ultraefficient SSL, 10

1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence, 21

1.4 Smart Solid–State Lighting: Toward Control of Flux and Spectra in Time and Space, 42

1.5 Summary and Conclusions, 46

Acknowledgments, 46

References, 47

2 Integrated Optics Using High Contrast Gratings 57Connie Chang–Hasnain and Weijian Yang

2.1 Introduction, 57

2.2 Physics of Near–Wavelength Grating, 58

2.3 Applications of HCGs, 77

2.4 Summary, 98

Acknowledgments, 98

References, 98

3 Plasmonic Crystals: Controlling Light with Periodically Structured Metal Films 107Wayne Dickson, Gregory A. Wurtz and Anatoly V. Zayats

3.1 Introduction, 107

3.2 Surface Plasmon Polaritons, 110

3.3 Basics of Surface Plasmon Polaritonic Crystals, 113

3.4 Polarization and Wavelength Management with Plasmonic Crystals, 120

3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals, 138

3.6 Active Control of Light with Plasmonic Crystals, 146

3.7 Conclusion, 160

Acknowledgments, 160

References, 160

4 Optical Holography 169Raymond K. Kostuk

4.1 Introduction, 169

4.2 Basic Concepts in Holography, 169

4.3 Hologram Analysis, 172

4.4 Hologram Geometries, 182

4.5 Holographic Recording Materials, 183

4.6 Digital Holography, 188

4.7 Computer Generated Holography, 193

4.8 Holographic Applications, 198

References, 208

5 Cloaking and Transformation Optics 215Martin W. McCall

5.1 Introduction, 215

5.2 Theoretical Underpinning, 217

5.3 The Carpet Cloak, 226

5.4 Conformal Cloaking, 232

5.5 Spacetime Cloaking, 234

5.6 Conclusion and Outlook: Beyond Optics, 243

Appendix 5.A: Technicalities, 244

Appendix 5.B: Vectors and Tensors in Flat Spacetime, 245

Appendix 5.C: Maxwell s Equations and Constitutive Relations in Covariant Form, 247

References, 251

6 Photonic Data Buffers 253S. J. B. Yoo

6.1 Introduction, 253

6.2 Applications of Photonic Buffers, 254

6.3 Limitations of Electronics, 258

6.4 Photonic Buffer Technologies, 260

6.5 Integration Efforts, 278

6.6 Summary, 278

References, 278

7 Optical Forces, Trapping and Manipulation 287Halina Rubinsztein–Dunlop, Alexander B. Stilgoe, Darryl Preece, Ann Bui, and Timo A. Nieminen

7.1 Introduction, 287

7.2 Theory of Optical Forces, 293

7.3 Theory of Optical Torques, 301

7.4 Measurement of Forces and Torques, 308

7.5 Calculation of Forces and Torques, 318

7.6 Conclusion, 329

References, 329

8 Optofluidics 341Lin Pang, H. Matthew Chen, Lindsay M. Freeman, and Yeshaiahu Fainman

8.1 Introduction, 341

8.2 Photonics with Fluid Manipulation, 342

8.3 Fluidic Sensing, 350

8.4 Fluidic Enabled Imaging, 353

8.5 Fluid Assisted Nanopatterning, 358

8.6 Conclusions and Outlook, 361

Acknowledgments, 362

References, 362

9 Nanoplasmonic Sensing for Nanomaterials Science 369Elin M. Larsson–Langhammer, Svetlana Syrenova, and Christoph Langhammer

9.1 Introduction, 369

9.2 Nanoplasmonic Sensing and Readout, 370

9.3 Inherent Limitations of Nanoplasmonic Sensors, 373

9.4 Direct Nanoplasmonic Sensing, 373

9.5 Indirect Nanoplasmonic Sensing, 374

9.6 Overview on Different Examples, 376

9.7 Discussion and Outlook, 396

References, 397

10 Laser Fabrication and Nanostructuring 403Cemal Esen and Andreas Ostendorf

10.1 Introduction, 403

10.2 Laser Systems for Nanostructuring, 404

10.3 Surface Structuring by Laser Ablation, 409

10.4 Generation of thin Films by Laser Ablation in Vacuum, 416

10.5 Generation of Nanoparticles by Laser Ablation in Liquids, 419

10.6 Laser Induced Volume Structures, 423

10.7 Direct Writing of Polymer Components via Two–Photon Polymerization, 426

10.8 Conclusion, 431

References, 432

11 Free Electron Lasers for Photonics Technology by Wiley 445George R. Neil and Gwyn P. Williams

11.1 Introduction, 445

11.2 Physical Principles, 446

11.3 Worldwide FEL Status, 462

11.4 Applications, 466

11.5 Summary and Conclusion, 471

References, 471

Index 477

Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
David L. Andrews leads research on fundamental molecular photonics and energy transport, optomechanical forces and nonlinear optical phenomena. He has over 160 research papers and also eight books to his name – including the widely adopted textbook Lasers in Chemistry. The current focus of his research group is on novel mechanisms for optical nanomanipulation and switching, and light–harvesting in nanostructured molecular systems. The group enjoys strong international links, particularly with groups in Canada, Lithuania, New Zealand and the United States. Andrews is a Fellow of the Royal Society of Chemistry, and a Fellow of the Institute of Physics, and he is the inaugural Chair of the SPIE Nanotechnology Technical Group.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll