Multi-modality Cardiac Imaging. Processing and Analysis

Description: The imaging of moving organs such as the heart, in particular, is a real challenge because of its movement. This book presents current and emerging methods developed for the acquisition of images of moving organs in the five main medical imaging modalities: conventional X-rays, computed tomography (CT), magnetic resonance imaging (MRI), nuclear imaging and ultrasound. The availability of dynamic image sequences allows for the qualitative and quantitative assessment of an organ's dynamics, which is often linked to pathologies.

Contents:

PREFACE xiii

ACKNOWLEDGMENTS xv

INTRODUCTION xvii

PART 1. METHODOLOGICAL BASES 1

CHAPTER 1. EXTRACTION AND SEGMENTATION OF STRUCTURES IN IMAGE SEQUENCES 3
Olivier BERNARD, Patrick CLARYSSE, Thomas DIETENBECK, Denis FRIBOULET, Stéphanie JEHAN-BESSON and Jérome POUSIN

1.1. Problematics 3

1.2. Overview of segmentation methods 3

1.3. Summary of the different classes of deformable models 6

1.3.1. Non-energy approaches 7

1.3.2. Energy-based approaches 8

1.4. Deformable templates 11

1.4.1. Elastic deformable template principle 12

1.4.2. Dynamic elastic deformable template 14

1.4.3. Elastic deformable template and modal analysis 15

1.4.4. The elastic deformable template in practice 15

1.5. Variational active contours 17

1.5.1. Active contour representations 17

1.5.2. Energy functional 21

1.5.3. Obtaining the evolution equation 26

1.5.4. Level set digital implementation 34

1.6. Integration of a priori constraints in the formalism of variational contours 35

1.6.1. Shape a priori 36

1.6.2. Motion a priori 38
1.7. Implementation examples in cardiac imaging 44
1.7.1. Echographic imaging: choice of the data fitting term 44
1.7.2. Example of 3D echocardiography image segmentation 46
1.7.3. Example of 2D echocardiography image segmentation 48
1.8. Conclusion 50
1.9. Bibliography 52

CHAPTER 2. MOTION ESTIMATION AND ANALYSIS 65
Patrick CLARYSSE and Jérome POUSIN
2.1. Problematics 65
2.2. Problem formulation 66
2.3. Transport methods 67
2.3.1. Optical flow 68
2.3.2. Motion estimation seen as an optimal transport problem 70
2.4. Probabilistic approaches 74
2.5. Image registration 76
2.5.1. Transformation 77
2.5.2. Similarity function 78
2.5.3. Optimization 78
2.5.4. Practical considerations 79
2.6. Local methods 79
2.6.1. Block or primitive–matching 79
2.6.2. Least–square estimation 81
2.7. Hybrid methods 81
2.7.1. Power spectrum–based methods 82
2.7.2. Spatiotemporal description 82
2.8. Phase–based methods 84
2.8.1. Fleet and Jepson’s method 85
2.8.2. Analytic and monogenic signal 86
2.8.3. Harmonic phase methods 88
2.9. Registration and motion estimation in a sequence of images 89
2.9.1. Lagrangian description 89
2.9.2. Eulerian description 91
2.9.3. Strategies for the estimation in sequence 91

2.10. Evaluation of motion estimation methods 92

2.11. Conclusion 95

2.12. Bibliography 95

CHAPTER 3. POST–PROCESSING AND ANALYSIS OF DYNAMIC MAGNETIC RESONANCE IMAGES FOR MYOCARDIAL PERFUSION QUANTIFICATION 103
Bruno NEYRAN and Magalie VIALLON

3.1. Introduction 103

3.2. Dynamic measurement of perfusion with contrast agents: reminder about the MRI sequences and the different contrast agents used 107

3.2.1. Brief reminder about cardiac perfusion MRI sequences 107

3.2.2. MRI signal conversion/tracer concentration 107

3.2.3. Different clinical–candidate contrast agents 108

3.3. Motion correction and contour segmentation of the myocardium: important preprocessing prior to quantitative analysis 109

3.3.1. Dynamic image registration 109

3.3.2. Automatic contour extraction 109

3.4. Semi–quantitative perfusion analysis: calculation of relative parameters depending on the injection of the contrast medium 110

3.4.1. Semi–quantitative perfusion parameters 110

3.4.2. Heuristic modeling using a varied gamma function 112

3.4.3. Heuristic modeling with a bi–exponential function 114

3.4.4. Heuristic modeling with the Moate model 115

3.5. Absolute parameters independent of the contrast agent injection (taking account of the arterial input): pharmacokinetic modeling 117

3.5.1. General studies: tracer kinetics theory 118

3.5.2. Identification of the residual function 127

3.5.3. Identification of the discrete residual function 129

3.6. Conclusion 133

3.7. Bibliography 135

CHAPTER 4. TENSOR DECOMPOSITION OF A DYNAMIC SEQUENCE OF IMAGES INTO SIMPLE ELEMENTS 141
Frédérique FROUIN and Claire PELLOT–BARAKAT

4.1. Problematics 141

4.2. Panorama of methods for the quantitative analysis of dynamic image sequences 143

4.2.1. Regions of interest method 143
4.2.2. Parametric imaging methods 144
4.2.3. Movement analysis methods 145
4.2.4. Tensor decomposition of a sequence of images into simple elements 145
4.3. Tensor decomposition methods of an image sequence into simple elements 146
4.3.1. Notations and decomposition principle 146
4.3.2. Orthogonal decomposition of an image sequence 147
4.3.3. Decomposition into simple elements 148
4.4. Specifications for radiotracer or contrast medium monitoring 149
4.4.1. Proposed approach objectives and associated constraints definition 149
4.4.2. Components estimation principle 149
4.4.3. Example of tensor decomposition into simple elements in myocardial perfusion studies 152
4.4.4. Limitations of the proposed approach 153
4.4.5. Clinical applications of the tensor decomposition into simple elements for cardiac imaging 155
4.5. Specifications for the study of cardiac motion 156
4.5.1. Proposed approach objectives and associated constraint definition 156
4.5.2. Tensor decomposition method solution 157
4.5.3. Tensor decomposition model extensions 160
4.5.4. Clinical applications and perspectives 164
4.6. Conclusion 165
4.7. Bibliography 166

PART 2. APPLICATION EXAMPLES 169

CHAPTER 5. EVALUATION OF CARDIAC STRUCTURE SEGMENTATION IN CINE MAGNETIC RESONANCE IMAGING 171
Alain LALANDE, Mireille GARREAU and Frédérique FROUIN

5.1. Context: significance of the automatic segmentation of the cardiac structures 171
5.1.1. Cine MRI in short-axis orientation 171
5.1.2. Left ventricle and right ventricle 172
5.2. Evaluation necessity 175
5.2.1. The place of evaluation 175
5.2.2. Analytic and empirical methods 176
5.3. Empirical evaluation methods 177
5.4. Visual evaluation methods 179
5.5. Supervised methods 180
5.5.1. The definition of a reference 180
5.5.2. Creation of an expert database 183
5.5.3. Evaluation criterion: edge-based approaches 184
5.5.4. Evaluation criteria: region-based approaches 188
5.5.5. Supervised methods for the estimation of a clinical parameter 192
5.5.6. ROC curves 193
5.5.7. Comparison of the supervised methods 194
5.5.8. Limitations of the supervised methods 195
5.6. Non-supervised evaluation methods 198
5.6.1. Unsupervised methods relying on region- or edge-based descriptors 198
5.6.2. Methods using a clinical parameter 202
5.6.3. Estimation methods of a reference segmentation 204
5.6.4. Difficulties in unsupervised methods 205
5.7. Conclusion 205
5.8. IMPEIC and MEDIEVAL working groups 207
5.9. Bibliography 209

CHAPTER 6. PHASE-BASED HEART MOTION ESTIMATION IN MULTIMODALITY CARDIAC IMAGING 217
Martino ALESSANDRINI, Adrian BASARAB, Olivier BERNARD and Philippe DELACHARTRE
6.1. Phase images 218
6.1.1. Multidimensional analytic signals 218
6.1.2. Monogenic signal 219
6.2. Optical flow motion estimation on the phase of the two single-orthant analytic signals and using a
deformable mesh: application to cardiac MRI sequences 221
6.2.1. Optical flow method applied to spatial phase images 223
6.2.2. Parametric modeling of local motion 226
6.2.3. Trajectory estimation 228
6.2.4. Results 230
6.2.5. Conclusion 235
6.3. Motion estimation by optical flow from the monogenic phase using a local affine model and multiscale
analysis application to ultrasonic cardiac sequences 236
6.3.1. Affine model 237
6.3.2. Multiscale choice of the window size 238
CHAPTER 9. PERSONALIZATION OF ELECTROMECHANICAL MODELS OF THE CARDIAC VENTRICULAR FUNCTION BY HETEROGENEOUS CLINICAL DATA ASSIMILATION
Stephanie MARCHESSEAU, Maxime SERMESANT, Florence BILLET, Hervé DELINGETTE and Nicholas AYACHE

9.1. Introduction
9.2. Anatomy and electrophysiology personalization from clinical data
9.2.1. Personalization of the heart and the tissue structure anatomy
9.2.2. Cardiac electrophysiology personalization
9.3. Heart mechanics modeling
9.3.1. Modeling of the Bestel Clément Sorine electromechanical coupling
9.3.2. Blood flow modeling
9.3.3. Other boundary conditions
9.3.4. Discussion about this model
9.4. Image data processing: cardiac kinematics personalization
9.4.1. Metrics for the comparison between observed and simulated motion
9.4.2. Data time interpolation
9.4.3. Deformable models approach
9.4.4. Data displacement case
9.4.5. Velocity data case
9.4.6. Results with cine-MRI data
9.4.7. Results from dynamic CT data
9.5. Calibration of the mechanical parameters from global data
9.5.1. Available data description
9.5.2. Unscented transform calibration
9.5.3. Calibration results with healthy volunteers
9.5.4. Calibration results with pathological cases
9.6. Mechanical personalization by variational data assimilation
9.6.1. Variational approach on a simplified model
9.6.2. Application to synthetic cases
9.6.3. Application to clinical cases
9.6.4. Sequential approach on full model
9.7. Conclusion
9.8. Bibliography
CONCLUSION 331
APPENDIX 1 335
APPENDIX 2 339
LIST OF AUTHORS 343
INDEX 347

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2674249/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Multi-modality Cardiac Imaging. Processing and Analysis
Web Address: http://www.researchandmarkets.com/reports/2674249/
Office Code: SC

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): ☐ USD 157 + USD 30 Shipping/Handling

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: ☐ Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World