+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Advances in Science and Technology of Mn+1AXn Phases

  • ID: 2719437
  • Book
  • October 2012
  • 474 Pages
  • Elsevier Science and Technology
1 of 3
Advances in Science and Technology of Mn+1AXn Phases presents a comprehensive review of synthesis, microstructures, properties, ab-initio calculations and applications of Mn+1AXn phases and targets the continuing research of advanced materials and ceramics. An overview of the current status, future directions, challenges and opportunities of Mn+1AXn phases that exhibit some of the best attributes of metals and ceramics is included. Students of materials science and engineering at postgraduate level will value this book as a reference source at an international level for both teaching and research in materials science and engineering. In addition to students the principal audiences of this book are ceramic researchers, materials scientists and engineers, materials physicists and chemists. The book is also an invaluable reference for the professional materials and ceramics societies.

- The most up-to-date and comprehensive research data on MAX phases is presented- Written by highly knowledgeable and well-respected researchers in the field- Discusses new and unusual properties

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Note: Product cover images may vary from those shown
2 of 3

List of figures

List of Tables


About the editor and contributors

Chapter 1: Methods of MAX-phase synthesis and densification â?" I


1.1 Introduction

1.2 Synthesis methods

Chapter 2: Methods of MAX-phase synthesis and densification â?" II


2.1 Introduction

2.2 Powder synthesis

2.3 Synthesis of solids

2.4 Synthesis of thin films

2.5 Mechanisms of reaction synthesis for MAX phases

2.6 Conclusions

Chapter 3: Consolidation and synthesis of MAX phases by Spark Plasma Sintering (SPS): a review


3.1 Introduction

3.2 Spark plasma sintering

3.3 Spark plasma sintering of MAX phases

3.4 MAX phase composites

3.5 MAX phase solid solutions

3.6 MAX phase coatings

3.7 Conclusions

Chapter 4: Microstructural examination during the formation of Ti3AlC2 from mixtures of Ti/Al/C and Ti/Al/TiC


4.1 Introduction

4.2 Experimental procedure

4.3 Effect of starting powder mixtures on formation of Ti3AlC2

4.4 Reaction routes for powder mixture of 3Ti/Al/2C

4.5 Reaction routes for powder mixture of Ti/Al/2TiC

4.6 Summary

Chapter 5: Fabrication of in situ Ti2AlN/TiAl composites and their mechanical, friction and wear properties


5.1 Introduction

5.2 Fabrication of Ti2AlN/TiAl composites

5.3 Mechanical properties of Ti2AlN/TiAl composites

5.4 Friction and wear properties of Ti2AlN/TiAl composites at room temperature

5.5 Friction and wear properties of Ti2AlN/TiAl composites at high temperature

5.6 Conclusions

Chapter 6: Use of MAX particles to improve the toughness of brittle ceramics


6.1 Introduction

6.2 Experimental

6.3 Results and discussion

6.4 Conclusions

Chapter 7: Electrical properties of MAX phases


7.1 Introduction

7.2 Resistivity

7.3 Conduction mechanisms

7.4 Superconductivity

7.5 Conclusions


Chapter 8: Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases


8.1 Introduction

8.2 Crystal structure of MAX phases

8.3 Steric effect on the M-site in MAX phases

8.4 Bulk modulus of MAX phases

8.5 Analysis of the electronic structure

8.6 Elastic properties

8.7 Effect of oxygen incorporation on the structural, elastic and electronic properties in Ti2SnC

8.8 Conclusions


Chapter 9: Computational modelling and ab initio calculations in MAX phases â?" I


9.1 Introduction

9.2 Density functional theory

9.3 The structural properties of Mn + 1AXn under pressure

9.4 Ab initio study of electronic properties

9.5 Ab initio study of mechanical properties

9.6 Ab initio study of optical properties

Chapter 10: Computational modeling and ab initio calculations in MAX phases â?" II


10.1 Computational modeling of MAX phases

10.2 Electronic structures and properties of MAX phases

10.3 Stabilities and occurrences of MAX phases

10.4 Elasticity and other physical properties of MAX phases

10.5 Effects of defects and impurities in MAX phases

10.6 Summary

Chapter 11: Self-healing of MAX phase ceramics for high temperature applications: evidence from Ti3AlC2


11.1 Introduction

11.2 Evidence of crack healing

11.3 Oxidation of crack surfaces

11.4 Mechanical properties of healed Ti3AlC2 ceramics

11.5 Crack healing mechanism

11.6 Conclusions and future perspectives


Chapter 12: Oxidation characteristics of Ti3AlC2, Ti3SiC2 and Ti2AlC


12.1 Introduction

12.2 Experimental procedures

12.3 Results and discussion

12.4 Conclusions


Chapter 13: Hydrothermal oxidation of Ti3SiC2


13.1 Introduction

13.2 Hydrothermal oxidation of Ti3SiC2 powders

13.3 Effect of Al dopant on the hydrothermal oxidation of Ti3SiC2 powders

13.4 Hydrothermal oxidation of bulk Ti3SiC2

13.5 Summary

Chapter 14: Stability of Ti3SiC2 under charged particle irradiation


14.1 Introduction

14.2 Effect of ion irradiation in carbides

14.3 Lattice parameter and microstrains

14.4 Disorder and amorphisation

14.5 Phase transformations

14.6 Damage tolerance

14.7 Defect annealing

14.8 Conclusions


Chapter 15: Phase and thermal stability in Ti3SiC2 and Ti3SiC2/TiC/TiSi2 systems


15.1 Introduction

15.2 Experimental methods

15.3 Results and discussion

15.4 Conclusions



Note: Product cover images may vary from those shown
3 of 3
Low, I M
Professor I. M. Low is the current WA Branch President and Federal Secretary of the Australian Ceramic Society. Since 2008, he has served on the Editorial Board of the Journal of the Australian Society. He is the recipient of the prestigious 1996 Joint Australasian Ceramic Society/Ceramic Society of Japan Ceramic Award for ceramics research and edited five books, along with authoring over 200 archival research papers. He also currently serves as an OzReader for the Australian Research Council to assess Laureate Fellowships and Discovery Projects proposals.
Note: Product cover images may vary from those shown