Virtual Synthesis of Nanosystems by Design

  • ID: 2784524
  • Book
  • 382 Pages
  • Elsevier Science and Technology
1 of 4

This is the only book on a novel fundamental method that uses quantum many body theoretical approach to synthesis of nanomaterials by design. This approach allows the first-principle prediction of transport properties of strongly spatially non-uniform systems, such as small QDs and molecules, where currently used DFT-based methods either fail, or have to use empirical parameters. The book discusses modified algorithms that allow mimicking experimental synthesis of novel nanomaterials---to compare the results with the theoretical predictions--and provides already developed electronic templates of sub-nanoscale systems and molecules that can be used as components of larger materials/fluidic systems.

  • The only publication on quantum many body theoretical approach to synthesis of nano- and sub-nanoscale systems by design.
  • Novel and existing many-body field theoretical, computational methods are developed and used to realize the theoretical predictions for materials for IR sensors, light sources, information storage and processing, electronics, light harvesting, etc. Novel algorithms for EMD and NEMD molecular simulations of the materials' synthesis processes and charge-spin transport in synthesized systems are developed and described.
  • Includes the first ever models of Ni-O quantum wires supported by existing experimental data.
  • All-inclusive analysis of existing experimental data versus the obtained theoretical predictions and nanomaterials templates.
Note: Product cover images may vary from those shown
2 of 4
Part 1. QUANTUM STATISTICAL MECHANICS FUNDAMENTALS
CHAPTER 1. Transport Properties of Spatially Inhomogeneous Quantum Systems from the First Principles
CHAPTER 2. Quantum Properties of Small Systems at Equilibrium: The First Principle Calculations
CHAPTER 3. Small Quantum Dots of Traditional III-V Semiconductor Compounds
Part 2. APPLICATIONS: CHARGE AND SPIN TRANSPORT IN MOLECULES, SMALL QDS AND QWS
CHAPTER 4. Small Quantum Dots Of Gallium and Indium Arsenide Phosphides: Opto-electronic Properties, Spin Polarization and A Composition Effect Of Quantum Confinement
CHAPTER 5. Small Quantum Dots of Diluted Magnetic III-V Semiconductor Compounds
CHAPTER 6. Small Quantum Dots of Indium Nitrides
CHAPTER 7. Nickel Oxide Quantum Dots and Nanopolymer Quantam Wires
CHAPTER 8. Small Quantum Dots Of Indium Nitrides with Special Magneto-optic Properties
APPENDIX. Examples of Virtual Templates of Small Quantum Dots and Wires of Semiconductor Compound Elements
Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Pozhar, Liudmila

Dr. Liudmila A. Pozhar is the Chief Scientist with PermaNature, LLC, a company that develops and manages research projects in sciences, engineering and education, and provides professional help and advice to undergraduate and graduate students seeking professional degrees in sciences and engineering. Since 1995 she has also served as Associate Scientific Editor, Series in Contemporary Chemical Physics, for World Scientific (Singapore).

She received her Master Degree in Physics from the Department of Physics (currently School of Physics) at Kharkov State University (currently Kharkov National University) in Kharkov, USSR/Ukraine, and her PhD in Physics and Mathematics from B. I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences, Kharkov, USSR/Ukraine.

Dr. Pozhar is an expert in fundamental theoretical approaches to and modeling of physical and chemical processes in and properties of quantum and classical systems. She pioneered several first-principle theoretical methods in non-equilibrium and equilibrium statistical mechanics, condensed matter, quantum, theoretical, statistical, mathematical, computational and chemical physics, and quantum chemistry. Her major achievements include Pozhar-Gubbins projection operator method, a fundamental transport theory of strongly inhomogeneous fluids, and Pozhar's theory of charge and spin transport in strongly spatially non-uniform quantum systems. Currently, Dr. Pozhar works on a generalization of this latter method to a generalized projection operator approach with Sarry's closure applicable to any quantum or classical system with arbitrary spatial inhomogeneities. Applying her theoretical methods to practical engineering problems, Dr. Pozhar has developed a concept and computational tools of a first-principle theory-based, computational method (called virtual synthesis method) and synthesized virtually about 40 quantum dot and wire systems, and 20 nanofluidic systems, with pre-designed structural, electronic, optical, magnetic and dynamic properties. She is an author of 3 books, and several book chapters, and published about 160 peer-reviewed papers in refereed journals.

Prior to her appointment as the Chief Scientist with PermaNature, Dr. Pozhar worked as a professor for the University of Idaho, Western Kentucky University, University of Tennessee/ORNL, and the University of Surrey (UK). She served as a Senior National Research Council Research Associate, Senior Scientist, Visiting Scholar, Deputy Director for Research, and Research Group Head with world-class Government Labs and academic institutions, including the Air Force Research Laboratory (AFRL, Dayton, OH), Cornell University, UNESCO International Center for Theoretical Physics (ICTP, Trieste, Italy), Institute of Electromagnetic Research (Kharkov, Ukraine), and B.I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Scientist (ILTPE, Kharkov, USSR/Ukraine).

Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll