Heterogeneous System Architecture

  • ID: 3336049
  • Book
  • 206 Pages
  • Elsevier Science and Technology
1 of 4
Heterogeneous Systems Architecture - a new compute platform infrastructure presents a next-generation hardware platform, and associated software, that allows processors of different types to work efficiently and cooperatively in shared memory from a single source program. HSA also defines a virtual ISA for parallel routines or kernels, which is vendor and ISA independent thus enabling single source programs to execute across any HSA compliant heterogeneous processer from those used in smartphones to supercomputers.

The book begins with an overview of the evolution of heterogeneous parallel processing, associated problems, and how they are overcome with HSA. Later chapters provide a deeper perspective on topics such as the runtime, memory model, queuing, context switching, the architected queuing language, simulators, and tool chains. Finally, three real world examples are presented, which provide an early demonstration of how HSA can deliver significantly higher performance thru C++ based applications. Contributing authors are HSA Foundation members who are experts from both academia and industry. Some of these distinguished authors are listed here in alphabetical order: Yeh-Ching Chung, Benedict R. Gaster, Juan Gómez-Luna, Derek Hower, Lee Howes, Shih-Hao HungThomas B. Jablin, David Kaeli,Phil Rogers, Ben Sander, I-Jui (Ray) Sung.

- Provides clear and concise explanations of key HSA concepts and fundamentals by expert HSA Specification contributors - Explains how performance-bound programming algorithms and application types can be significantly optimized by utilizing HSA hardware and software features - Presents HSA simply, clearly, and concisely without reading the detailed HSA Specification documents- Demonstrates ideal mapping of processing resources from CPUs to many other heterogeneous processors that comply with HSA Specifications
Note: Product cover images may vary from those shown
2 of 4

1. Introduction 2. HSA Overview 3. HSAIL
Virtual Parallel ISA 4. HSA Runtime 5. HSA Memory Model 6. HSA Queuing Model 7. Compilation Technology 8. Application Use Cases: Platform Atomics 9. HSA Simulators: Simulating HSA in Multi2Sim

Note: Product cover images may vary from those shown
3 of 4


4 of 4
Hwu, Wen-mei W.
Wen-mei W. Hwu is a Professor and holds the Sanders-AMD Endowed Chair in the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign. His research interests are in the area of architecture, implementation, compilation, and algorithms for parallel computing. He is the chief scientist of Parallel Computing Institute and director of the IMPACT research group (www.impact.crhc.illinois.edu). He is a co-founder and CTO of MulticoreWare. For his contributions in research and teaching, he received the ACM SigArch Maurice Wilkes Award, the ACM Grace Murray Hopper Award, the Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, the ISCA Influential Paper Award, the IEEE Computer Society B. R. Rau Award and the Distinguished Alumni Award in Computer Science of the University of California, Berkeley. He is a fellow of IEEE and ACM. He directs the UIUC CUDA Center of Excellence and serves as one of the principal investigators of the NSF Blue Waters Petascale computer project. Dr. Hwu received his Ph.D. degree in Computer Science from the University of California, Berkeley.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown