Fatal Accidents in Advanced Technology Aircraft: A Critical Survey

Description: Fatal Accidents in Advanced Technology Aircraft: A Critical Survey was prepared by Captain Livni Gideon who is a very experienced pilot and investigator, flying B-757, B-767 and B-777, mentor to the former Israeli Air Force Commander Gen (Ret) H. Bodinger.

The new study helps in identifying potential reasons for "Advanced Technology Aircraft" accidents and suggests acts to prevent them.

During an era when the outcome of one fatal accident often leads to the airline's bankruptcy, this study possesses a unique significance due to the general perception and to the irregular approach of the analysis concerning the phenomena common to the overall accidents.

In addition to the conclusions and recommendations, and to prevent the recurrence of similar accidents, the research outlines a strategy for future preparation to the replacement of future aircraft technology, in order to prevent accidents defined as “the childhood diseases of the new technology”.

Computerizing the cockpit and using advance technologies brought a dramatic decrease of aircraft accidents during the last 20 years. However, the new Glass Cockpit created different kinds of safety problems and caused some fatal accidents in which thousands of people lost their lives and the damages were enormous.

This applied research tests, in great depth, the reasons why 27 fatal accidents occurred while involving advanced technology aircraft. The research analyzes the acute phenomena, which characterizes the human factor in Glass Cockpit aircraft:

- Misunderstanding the behavior of the aircraft, including its systems
- Canalizing events
- Spatial orientation failures
- Aircraft maneuvering envelopes exceedance
- The unique mental factors

The research analyzes the deterioration of acute technical failures, leading to loss of control of the aircraft, and to the contribution of the "organization" factors (manufacturer, airlines and the civil aviation authorities) to the chain of failures, which led to the occurrence of the accidents, relating to the aircrafts' design, maintenance, operation and the policy involving aircrew handling.

Who would find the report useful?
- Air line operators
- Civil Aviation Administration
- Aircraft Manufacturers
- Air Forces authorities
- Universities and Research Institutions for Aviation Safety and Accidents investigation

I. Methodology

2. Objectives

a. The question addressed in this investigation is: "What are the critical weak points in the safety of advanced technology aircraft operated by the airlines".
b. Its aim is to characterize and analyze the fatal accidents involving passenger and cargo aircraft - defined as "advanced", which have occurred between the years 1990-2002.
c. The analysis of each accident is focused on the following questions:
 I. What happened? – Characterizing the categories of risk.
 ii. How did it happen? – Characterizing the individual processes within the chain of failures.
 iii. Who or what were the causes?
 v. How can the recurrence of similar accidents be prevented? Does a correlation exist between the occurrence of the accident and the “Glass-Cockpit” concept?
d. The conclusions drawn from this research are intended to provide a basis for recommendations designed to minimize the risk of fatal accidents to advanced Technology aircraft on commercial flights.

3. Research Population

The research population comprises:

a. Aircraft of the Glass Cockpit type defined as Advanced Technology aircraft ("Advanced Aircraft"). The precise definition and related considerations will be presented in detail below.
b. Western manufactured aircraft only, due to the unavailability of information considering the structure and design of non-western manufacture or of their methods of operation.
c. Passenger aircraft with a minimal capacity of 50 passengers.
d. Cargo aircraft.
e. Commercial/operational scheduled flights only.
f. International airline and charter airlines...
g. Accidents resulting in fatalities that occurred between the years 1983 and 2002.

Remark: The main reason for the restrictions listed in paragraphs 3, 4, 5 above is the necessity to establish a common denominator based on the threshold of aviation standards.

This research does not concern itself with:

a. Fatal accidents caused by an act of violence perpetrated by an external agent, e.g., passengers, sabotage, a terrorist act, etc.
b. Fatal accidents that occurred during experimental flights, air-show flights or demonstration flights.

Definition of Glass Cockpit Aircraft

The criteria used for the definition of glass cockpit aircraft for the purposes of this survey reflect the upgrade in the perception of how aircraft of the new generation should be operated. This stands in contradiction to the older operational perception, for aircraft in the systems of which digital computation was not incorporated.

These criteria include the following features*:

1. EADI, EHSI, NAV MAP displays and Flight Director displays on electronic screens (CRT, LCD).
2. Auto Flight controlled by FCC, as well as subordinated to the task computers.
3. Computerized engine power control, including an automatic functioning mode (Auto Thrust / Auto Throttle).
4. FMS for flight management by means of a task computer.

*The systems terminology is that used by Boeing

The research population includes the following types of aircraft:

AIRBUS: A300-600, A310, A318, A319, A320, A321, A330, A340
BOEING: B-737-400 to 900, B-757, B-767, B-777, B-747-400
MCDONNEL (BOEING): MD-11, MD-83, MD-87-90
AVRO: Avro RJ100
BAe: BAe 146-300
FOKKER: Fokker F-70 / F-100
CANADAIR: CRJ-700/-900

Definition of Fatal Accident

The Definitions adopted are based primarily on the corresponding ICAO terms.

a. Fatal Accident: An accident that results in fatal injury.
b. Fatal Injury: An injury that results in death within 30 days as a result of an accident.

Contents:

Abstract
Preface
Abbreviations

I Methodology
Background
Objectives
Research Population

II. Analysis TOC

Figure 1. Accident Rate in Advanced Technology Aircraft: General Trend

1. Introduction of Advanced Technology
2. Distribution by Manufacturer
3. Regional Distribution by Continent
4. Nature of Accidents
 4.1. CFIT-related Accidents
 4.2. Analysis of LOC-related Accidents
 4.3. On-Ground Collision
 4.4. In-Flight Collision (MIDAIR)
 4.5 Landing
5. The Human Factor
 5.1. Distribution of Causes
 5.2. Human–FDC
 5.3. Factors that Contribute to FDC
6. Technical Malfunction
7. G/C Related Accidents
 7.1. Phases of G/C Accidents
 7.2. The Nature of G/C Related Accidents
 7.3. Knowledge in G/C Related Accidents
 7.4. Mental Factors in G/C-Related Accidents
 7.5. G/C – MMI
 Table: Types of Error - G/C Switches
 Table: Types of Failure in G/C Flight-Mode Detection
8. The Organization
 8.1. The Organization as a Cause of Accidents
 8.2. Organization – Contributing Factors
 8.3. The Manufacturer
 8.4. The Airline
 8.5. Civil Aviation Authorities (CAA)

III Findings

1. Principal Findings
2. Detailed Findings
 2.1. Categorization of Causal Factors
 2.2. Risk Categories
 2.3. Human Factors –Summary of Findings
 2.4. MMI
 2.5. G/C related accidents

IV. Conclusions

1. General
2. The Manufacturer
3. The Airline
4. Civil Aviation Authorities (CAA)

V. Recommendations

1. Recommendations to CAA
2. Recommendations to the Airlines
3. Recommendations to the Manufacturer
Acknowledgements
References

Appendixes

App. 1 Description of the Accidents (92 pages)

App. 2 Tables - Data Distribution

1. General Data
2. Nature
3. Cause
4. Location of Accident – Continents
5. Contributing Factors - Flight Phase
6. Contributing Factors - Air Crew
7. Contributing Factors – ATC
8. Contributing Factors – Environment
10. Organization Related Factors
FDC Related - Types of Errors
11. Noncompliance to SOP
12. Spatial Orientation Error (Perceptual Error)
13. Types of FDC Errors – ATC & Area
14. Aircraft Handling Errors (Skill Based Errors)
15. Disregarding the Alert Systems
16. Man-Machine Interface (MMI) Errors
17. Flight Condition Identification Errors
18. Casual Factors – Human - Machine – Environment: Summary Table
19. Types of Errors – Air Traffic Controllers

App. 3 Graphic representation of data

Figure 1 Airbus & Boeing Accident rate
Figure 2 Airbus Accident rate
Figure 3 A340 Accident rate
Figure 4 A330 Accident rate
Figure 5 A321 Accident rate
Figure 6 A320 Accident rate
Figure 7 A319 Accident rate
Figure 8 A310 Accident rate
Figure 9 A300-600 Accident rate
Figure 10 Boeing Accident rate
Figure 11 Boeing 777 Accident rate
Figure 12 Boeing 767 Accident rate
Figure 13 Boeing 757 Accident rate
Figure 14 Boeing 747- 400 Accident rate
Figure 15 Boeing 737- 900 Accident rate
Figure 16 Boeing 737- 800 Accident rate
Figure 17 Boeing 737- 700 Accident rate
Figure 18 Boeing 737- 600 Accident rate
Figure 19 Boeing 737- 500 Accident rate
Figure 20 Boeing 737- 400 Accident rate
Figure 21 Distribution by Year
Figure 22 Distribution by Month
Figure 23 Distribution by Time of Day
Figure 24 Distribution of Number of Accidents by Manufacturer
Figure 25 Distribution by Location (Worldwide)
Figure 26 Distribution by Location (Asia)
Figure 27 Distribution by Location (Europe)
Figure 28 Distribution by Flight Phase
Figure 29 Distribution by Nature of Accident
Figure 30 CFIT – Distribution by Year
Figure 31 CFIT – Distribution by Month
Figure 32 CFIT – Distribution by Time of Day
Figure 33 CFIT – Distribution by Lighting Conditions
Figure 34 CFIT – Distribution by Fatalities/S.O.B
Figure 35 CFIT – Distribution of Number of Accidents by Manufacturer
Figure 36 CFIT – Distribution of Accidents per departure by Manufacturer
Figure 37 CFIT – Distribution by Primary Cause
Figure 38 CFIT – Distribution by Primary & Secondary Cause
Figure 39 CFIT – Distribution by Casual Factor
Figure 40 CFIT – Distribution by Type of Crew Error Regardin ATC and Area
Figure 41 CFIT – Distribution by Flight Phase
Figure 42 CFIT – Distribution of Accidents per Flight by Manufacturer
Figure 43 CFIT – Distribution by VMC / IMC
Figure 44 CFIT – Distribution by Lighting as a Factor in the Accident
Figure 45 CFIT – Distribution by Weather as a Factor in the Accident
Figure 46 CFIT – Distribution of Number of Accidents by Casual Factor
Figure 47 CFIT – Correlation with Unawareness to MSA and Lack of aerial S/A
Figure 48 CFIT – Correlation with Fatigue/Stress and Logical operation difficulties
Figure 49 CFIT - Correlation with Mountainous area, NON-ILS and Disregard of Radio Altimeter indication
Figure 50 LOC – Distribution by Year
Figure 51 LOC – Distribution by Month
Figure 52 LOC – Distribution by Time of Day
Figure 53 LOC – Distribution by Lighting conditions
Figure 54 LOC – Distribution by Fatalities/S.O.B
Figure 55 LOC – Distribution of Accidents by Manufacturer
Figure 56 N.A.
Figure 57 LOC – Distribution by Cause
Figure 58 LOC – Distribution by Primary and Secondary Cause
Figure 59 LOC – Distribution by Casual Factor
Figure 60 LOC – Distribution by Flight Phase
Figure 61 LOC – Distribution by VMC/IMC
Figure 62 Distribution by Cause
Figure 63 Distribution by Primary and Secondary Cause
Figure 64 Distribution of FDC related accidents - by A/C Manufacturer (1)
Figure 65 Distribution of FDC related accidents by A/C Manufacture (2)
Figure 66 Distribution by Contribution of Air Crew
Figure 67 Distribution by Manufacturer of Inadequate Knowledge of A/C Systems by FDC
Figure 68 Distribution by SOP Error
Figure 69 LOC – Distribution by Knowledge of A/C Systems
Figure 70 Distribution by Mental Factors
Figure 71 Distribution by Crew Error regarding "ATC" & "Area"
Figure 72 Distribution by Spatial Orientation Error (Perceptual Error)
Figure 73 CFIT – Distribution by Spatial Orientation Error
Figure 74 LOC – Distribution by Spatial Orientation Error
Figure 75 CFIT – Distribution by Contributing Factors due to FDC
Figure 76 Distribution by Flight-Condition Identification Error
Figure 77 Distribution by "Man-Machine Interface" Error
Figure 78 Distribution by Aircraft Handling Error
Figure 79 Distribution of Auto-flight "Lateral mode" Errors by Manufacturer
Figure 80 Distribution of Auto-flight "Vertical mode" Errors by Manufacturer
Figure 81 Distribution of EICAS reading & alerts by Manufacturer
Figure 82 Distribution of FMC Operation Errors by Manufacturer
Figure 83 Distribution of A/T- TOGA Errors by manufacturer
Figure 84 Distribution of MMI Errors by manufacturer
Figure 85 Distribution by Disregard of the Alert System
Figure 86 Distribution of Misperception of aircraft's behavior by CFIT/LOC
Figure 87 Correlation between CFIT and Misperception of aircraft's Behavior
Figure 88 Correlation between LOC and Misperception of aircraft's Behavior
Figure 89 Distribution of "Pilot's Misperception of Aircraft's Behavior" by Manufacturer
Figure 90 Distribution of MMI overrides by Manufacturer
Figure 91 Distribution of Flying Errors by Manufacturer
Figure 92 Distribution of "Maneuvering- Envelope Exceedance" by Manufacturer
Figure 93 Distribution by Contributing Factors due to ATC
Figure 94 Distribution by ATC Error
Figure 95 Distribution by Type of Technical Failure
Figure 96 Distribution of Technical Failures by Manufacturer
Figure 97 Distribution by Flight Phase of Canalization Caused by Technical Malfunction
Figure 98 Distribution of G/C-Related Accidents by Manufacturer
Figure 99 Distribution of G/C-Related Accidents by Flight Phase
Figure 100 Distribution of G/C-Related Accidents by Weather
Figure 101 Distribution by Lighting as a Factor in G/C Related Accidents
Figure 102 CFIT – Distribution by G/C-Related Accidents
Figure 103 LOC – Distribution by G/C-Related Accidents
Figure 104 Correlation between G/C related Accidents and FDC Errors in the Auto Flight System
Figure 105 Distribution of G/C-Related Accidents by Mental Factor
Figure 106 Distribution by Organization - Contributing Factor
Figure 107 Distribution by Organization Body Related Factor
Figure 108 Distribution by Organization Related Factor
Figure 109 Distribution by Manufacturer's Failures in SOP and Design (All Accidents)
Figure 110 Distribution by Manufacturer's failures in G/C related accidents

App. 4 Diagrams
1. The Cause Factor Model
2. The Human Factor Model
3. The taxonomy of unsafe operations
4. Categories of unsafe supervision
5. Categories of preconditions of unsafe acts
6. Categories of unsafe acts committed by aircrews
7. Social factors affecting aircrew error
8. Model of accident causation. Successful completion of the task

App. 5 Manufacturers flight data
Airbus Flight Data - Departures & Rates
Boeing Flight Data – Departures

Ordering:
Order Online - http://www.researchandmarkets.com/reports/349541/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Fatal Accidents in Advanced Technology Aircraft: A Critical Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/349541/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy: USD 1150 + USD 61 Shipping/Handling |

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Last Name:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>________________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>________________________________</td>
</tr>
<tr>
<td>City:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>________________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by Wire Transfer: Bank details will be provided on the invoice which you will receive after you place your order with us.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World