+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Soil Mechanics

  • ID: 3769849
  • Book
  • 462 Pages
  • Elsevier Science and Technology
1 of 3

Soil Mechanics: Calculations, Principles, and Methods provides expert insights into the nature of soil mechanics through the use of calculation and problem-solving techniques. This informed reference begins with basic principles and calculations, illustrating physical meanings of the unit weight of soil, specific gravity, water content, void ratio, porosity, saturation, and their typical values.

This is followed by calculations that illustrate the need for soil identification, classification, and ways to obtain soil particle size distribution, including sizes smaller than 0.075mm, performance, and the use of liquid and plastic limit tests. The book goes on to provide expert coverage regarding the use of soil identification and classification systems (both Unified Soil Classification System and AASHTO), and also includes applications concerning soil compaction and field applications, hydraulic conductivity and seepage, soil compressibility and field application, and shear strength and field application.

  • Presents common methods used for calculating soil relationships
  • Covers soil compressibility and field application and calculations
  • Includes soil compaction and field application calculations
  • Provides shear strength and field application calculations
  • Includes hydraulic conductivity and seepage calculations

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Note: Product cover images may vary from those shown
2 of 3

1. Example Problems Involving Phase Relations for Soils 2. Example Problems Related to Soil Identification and Classification 3. Example Problems Related to Compaction of Soils 4. Stresses, Strains, and Elastic Response of Soils 5. Example Problems Involving In Situ Stresses Under Hydrostatic Conditions 6. Example Problems Involving One-Dimensional Fluid Flow in Soils 7. Example Problems Involving Two-Dimensional Fluid Flow in Soils 8. Example Problems Related to Compressibility and Settlement of Soils 9. Example Problems Related to Time Rate of Consolidation 10. Example Problems Related to Shear Strength of Soils

Note: Product cover images may vary from those shown
3 of 3


4 of 3
Kaliakin, Victor
Prof. Kaliakin is a Professor in the Department of Civil & Environmental Engineering at the University of Delaware, where he has been on the faculty since 1990. His expertise is in the constitutive modelling of geomaterials and polymeric reinforcement, and in computational geomechanics. For the last 30 years he has performed research related to the simulation of time-dependent response of cohesive soils. Prof. Kaliakin is the author of Approximate Solution Techniques, Numerical Modeling and Finite Element Methods (Dekker, 2002), and has co-authored over 120 other publications. He is currently a member of the editorial board of Geosynthetics International.
Note: Product cover images may vary from those shown