# The Finite Element Method in Engineering. Edition No. 6

• ID: 4226552
• Book
• 782 Pages
• Elsevier Science and Technology
1 of 4

The Finite Element Method in Engineering, Sixth Edition, provides a thorough grounding in the mathematical principles behind the Finite Element Analysis technique-an analytical engineering tool originated in the 1960's by the aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. Rao shows how to set up finite element solutions in civil, mechanical and aerospace engineering applications. The new edition features updated real-world examples from MATLAB, Ansys and Abaqus, and a new chapter on additional FEM topics including extended FEM (X-FEM). Professional engineers will benefit from the introduction to the many useful applications of finite element analysis.

• Includes revised and updated chapters on MATLAB, Ansys and Abaqus
• Offers a new chapter, Additional Topics in Finite Element Method
• Includes discussion of practical considerations, errors and pitfalls in FEM singularity elements
• Features a brief presentation of recent developments in FEM including extended FEM (X-FEM), augmented FEM (A-FEM) and partition of unity FEM (POUFEM)
• Features improved pedagogy, including the addition of more design-oriented and practical examples and problems
• Covers real-life applications, sample review questions at the end of most chapters, and updated references
Note: Product cover images may vary from those shown
2 of 4

Part 1. Introduction

1. Overview of the Finite Element Method

Part 2. Basic Procedure

2. Discretization of the Domain 3. Interpolation Models 4. Higher Order and Isoparametric Elements 5. Derivation of Element Matrices and Vectors 6. Assembly of Element Matrices and Vectors and Derivation of System Equations 7. Numerical Solution of Finite Element Equations

Part 3. Application to Solid Mechanics Problems

8. Basic Equations and Solution Procedure 9. Analysis of Trusses, Beams and Frames 10. Analysis of Plates 11. Analysis of Three-Dimensional Problems 12. Dynamic Analysis

Part 4. Application to Heat Transfer Problems

13. Formulation and Solution Procedure 14. One-Dimensional Problems 15. Two-Dimensional Problems 16. Three-Dimensional Problems

Part 5. Application to Fluid Mechanics Problems

17. Basic Equations of Fluid Mechanics 18. Inviscid and Incompressible Flows 19. Viscous and Non-Newtonian Flows

Part 6. Solution and Applications of Quasi-Harmonic Equations

20. Solution of Quasi-Harmonic Equations

Part 7. ABAQUS and ANSYS Software and MATLAB® Programs for Finite Element Analysis

21. Finite Element Analysis Using ABAQUS 22. Finite Element Analysis Using ANSYS 23. MATLAB Programs for Finite Element Analysis

Appendix A Comparison of Finite Element Method with other Methods of Analysis Appendix B Green-Gauss Theorem (Integration by Parts in Two and Three Dimensions)

Note: Product cover images may vary from those shown
3 of 4

4 of 4
Rao, Singiresu S.
Mechanical Design, Optimization and Reliability in Mechanical and Structural Design, Finite Element methods, Structural Dynamics.

RESEARCH/SPECIALIZATION:

1. Multi-objective optimization.

2. Uncertainty models in engineering analysis, design and optimization.

3. Reliability based design.

4. Finite element and meshfree methods.

5. Optimization and reliability of renewable energy systems.

BOOKS PUBLISHED:

The Finite Element Method for Engineers, 5e, Elsevier, 2010; Mechanical Vibrations, 6th Edition, Pearson, 2016; Engineering Optimization Theory and Practice, 4th Edition, Wiley, 2009; Reliability Engineering, 1st Edition, Pearson, 2014

Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown