Thermal Inertia in Energy Efficient Building Envelopes

  • ID: 4288446
  • Book
  • 374 Pages
  • Elsevier Science and Technology
1 of 4

The design and construction of the appropriate building envelope is one of the most effective ways for improving a building's thermal performance. Thermal Inertia in Energy Efficient Building Envelopes provides the optimal solutions, tools and methods for designing the energy efficient envelopes that will reduce energy consumption and achieve thermal comfort and low environmental impact.

Thermal Inertia in Energy Efficient Building Envelopes provides experimental data, technical solutions and methods for quantifying energy consumption and comfort levels, also considering dynamic strategies such as thermal inertia and natural ventilation. Several type of envelopes and their optimal solutions are covered, including retrofit of existing envelopes, new solutions, passive systems such as ventilated facades and solar walls. The discussion also considers various climates (mild or extreme) and seasons, building typology, mode of use of the internal environment, heating profiles and cross-ventilation

  • Experimental investigations on real case studies, to explore in detail the behaviour of different envelopes
  • Laboratory tests on existing insulation to quantify the actual performances
  • Analytical simulations in dynamic conditions to extend the boundary conditions to other climates and usage profiles and to consider alternative insulation strategies
  • Evaluation of solutions sustainability through the quantification of environmental and economic impacts with LCA analysis; including global cost comparison between the different scenarios
  • Integrated evaluations between various aspects such as comfort, energy saving, and sustainability

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

READ MORE
Note: Product cover images may vary from those shown
2 of 4
1. High thermal resistance versus high thermal capacity: The dilemma
2. The envelope: A complex and dynamic problem
3. Retrofit of existing envelopes
4. New envelopes
5. Passive envelopes
6. Methods: Experimental surveys, analytic explorations and model reliability
Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Stazi, Francesca
Francesca Stazi, Ph.D, is Associate Professor at Polytechnic University of Marche. She carries out experimental and numerical research activities in the field of Building Science and Technology. The aim is to optimize the building envelope in terms of energy saving, thermal comfort, environmental sustainability and durability of the components. The researches cover new and existing envelopes, ventilated facades and passive solar systems. The acquired knowledge was applied in the patenting of two industrial inventions, an innovative ventilated thermal insulation and a GFRP frame for windows. The results of the studies are reported in 65 publications, including 25 papers on international ISI journals. She is also a reviewer for various international ISI Journals.
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll