+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Flat Panel Display Manufacturing. Edition No. 1. Wiley Series in Display Technology

  • Book

  • 352 Pages
  • August 2018
  • John Wiley and Sons Ltd
  • ID: 4398460

An extensive introduction to the engineering and manufacture of current and next-generation flat panel displays

This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies.

Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA.

  • Provides an overview of the evolution of display technologies and manufacturing
  • Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications
  • Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing
  • Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing
  • Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair
  • Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing

Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays.

Table of Contents

List of Contributors xxi

Series Editor’s Foreword xxv

Preface xxvii

1 Introduction 1
Fang‐Chen Luo, Jun Souk, Shinji Morozumi, and Ion Bita

1.1 Introduction 1

1.2 Historic Review of TFT‐LCD Manufacturing Technology Progress 1

1.2.1 Early Stage TFT and TFT‐Based Displays 2

1.2.2 The 1990s: Initiation of TFT‐LCD Manufacturing and Incubation of TFT‐LCD Products 2

1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies 4

1.2.4 The 2000s: A Golden Time for LCD‐TV Manufacturing Technology Advances 4

1.3 Analyzing the Success Factors in LCD Manufacturing 5

1.3.1 Scaling the LCD Substrate Size 7

1.3.2 Major Milestones in TFT‐LCD Manufacturing Technology 9

1.3.2.1 First Revolution: AKT Cluster PECVD Tool in 1993 9

1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997 9

1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003 10

1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays 10

References 11

2 TFT Array Process Architecture and Manufacturing Process Flow 13
Chiwoo Kim

2.1 Introduction 13

2.2 Material Properties and TFT Characteristics of a‐Si, LTPS, and Metal Oxide TFTs 15

2.2.1 a‐Si TFT 15

2.2.2 LTPS TFT 16

2.2.2.1 Excimer Laser Annealing (ELA) 17

2.2.3 Amorphous Oxide Semiconductor TFTs 22

2.3 a‐Si TFT Array Process Architecture and Process Flow 22

2.3.1 Four‐Mask Count Process Architecture for TFT‐LCDs 24

2.4 Poly‐Si TFT Architecture and Fabrication 27

2.5 Oxide Semiconductor TFT Architecture and Fabrication 30

2.6 TFT LCD Applications 32

2.7 Development of SLS‐Based System on Glass Display [1, 11, 14, 15] 33

References 35

3 Color Filter Architecture, Materials, and Process Flow 39
Young Seok Choi, Musun Kwak, and Youn Sung Na

3.1 Introduction 39

3.2 Structure and Role of the Color Filter 39

3.2.1 Red, Green, and Blue (RGB) Layer 40

3.2.1.1 Color Coordinate and Color Gamut 41

3.2.2 Black Matrix 44

3.2.3 Overcoat and Transparent Electrode 45

3.2.4 Column Spacer 46

3.3 Color Filter Manufacturing Process Flow 46

3.3.1 Unit Process 46

3.3.1.1 Formation of Black Matrix 46

3.3.1.2 Formation of RGB Layer 48

3.3.1.3 Overcoat (OC) 51

3.3.1.4 Formation of ITO Electrodes 53

3.3.1.5 Column Spacer (Pattern Spacer) 53

3.3.2 Process Flow for Different LC Mode 54

3.3.2.1 Color Filter for the TN Mode 54

3.3.2.2 Color Filter for the IPS Mode 54

3.3.2.3 Color Filter for the VA Mode 55

3.4 New Color Filter Design 55

3.4.1 White Color (Four Primary Colors) Technology 55

3.4.2 Color Filter on TFT 56

References 57

4 Liquid Crystal Cell Process 59
Heung‐Shik Park and Ki‐Chul Shin

4.1 Introduction 59

4.2 Liquid Crystal Cell Process 59

4.2.1 Alignment Layer Treatment 61

4.2.2 Process of Applying PI Layers 62

4.2.3 Rubbing Process 63

4.2.4 Photo‐Alignment Process 64

4.2.5 LC Filling Process 65

4.2.5.1 Vacuum Filling Method 66

4.2.5.2 End Seal Process 66

4.2.5.3 One Drop Filling (ODF) Method 67

4.2.6 Vacuum Assembly Process 68

4.2.7 Polarizer Attachment Process 69

4.3 Conclusions 70

Acknowledgments 70

References 70

5 TFT‐LCD Module and Package Process 73
Chun Chang Hung

5.1 Introduction 73

5.2 Driver IC Bonding: TAB and COG 73

5.3 Introduction to Large‐Panel JI Process 74

5.3.1 COF Bonding 75

5.3.1.1 Edge Clean 75

5.3.1.2 ACF Attachment 76

5.3.1.3 COF Pre‐Bonding 77

5.3.1.4 COF Main Bonding 78

5.3.1.5 Lead Check 78

5.3.1.6 Silicone Dispensing 78

5.3.2 PCB Bonding 79

5.3.3 PCB Test 79

5.3.4 Press Heads: Long Bar or Short Bar 79

5.4 Introduction to Small‐Panel JI Process 79

5.4.1 Beveling 80

5.4.2 Panel Cleaning 80

5.4.3 Polarizer Attachment 80

5.4.4 Chip on Glass (COG) Bonding 81

5.4.5 FPC on Glass (FOG) Bonding 81

5.4.6 Optical Microscope (OM) Inspection 81

5.4.7 UV Glue Dispense 82

5.4.8 Post Bonding Inspection (PBI) 82

5.4.9 Protection Glue Dispensing 82

5.5 LCD Module Assembly 83

5.6 Aging 84

5.7 Module in Backlight or Backlight in Module 85

References 86

6 LCD Backlights 87
Insun Hwang and Jae‐Hyeon Ko

6.1 Introduction 87

6.2 LED Sources 90

6.2.1 GaN Epi‐Wafer on Sapphire 92

6.2.2 LED Chip 93

6.2.3 Light Extraction 94

6.2.4 LED Package 96

6.2.5 SMT on FPCB 97

6.3 Light Guide Plate 98

6.3.1 Optical Principles of LGP 98

6.3.2 Optical Pattern Design 99

6.3.3 Manufacturing of LGP 101

6.3.3.1 Injection Molding 101

6.3.3.2 Screen Printing 102

6.3.3.3 Other Methods 103

6.4 Optical Films 104

6.4.1 Diffuser 106

6.4.2 Prism Film 107

6.4.3 Reflector 108

6.4.4 Other Films 108

6.5 Direct‐Type BLU 111

6.6 Summary 111

References 112

7 TFT Backplane and Issues for OLED 115
Chiwoo Kim

7.1 Introduction 115

7.2 LTPS TFT Backplane for OLED Films 116

7.2.1 Advanced Excimer Laser Annealing (AELA) for Large‐Sized AMOLED Displays 117

7.2.2 Line‐Scan Sequential Lateral Solidification Process for AMOLED Application 120

7.3 Oxide Semiconductor TFT for OLED 122

7.3.1 Oxide TFT-Based OLED for Large‐Sized TVs 123

7.4 Best Backplane Solution for AMOLED 125

References 127

8A OLED Manufacturing Process for Mobile Application 129
Jang Hyuk Kwon and Raju Lampande

8A.1 Introduction 129

8A.2 Current Status of AMOLED for Mobile Display 130

8A.2.1 Top Emission Technology 130

8A.3 Fine Metal Mask Technology (Shadow Mask Technology) 133

8A.4 Encapsulation Techniques for OLEDs 135

8A.4.1 Frit Sealing 135

8A.4.2 Thin‐Film Encapsulation 136

8A.5 Flexible OLED technology 137

8A.6 AMOLED Manufacturing Process 137

8A.7 Summary 140

References 140

8B OLED Manufacturing Process for TV Application 143
Chang Wook Han and Yoon Heung Tak

8B.1 Introduction 143

8B.2 Fine Metal Mask (FMM) 144

8B.3 Manufacturing Process for White OLED and Color Filter Methods 147

8B.3.1 One‐Stacked White OLED Device 149

8B.3.2 Two‐Stacked White OLED Device 152

8B.3.3 Three‐Stacked White‐OLED Device 155

References 157

9 OLED Encapsulation Technology 159
Young‐Hoon Shin

9.1 Introduction 159

9.2 Principles of OLED Encapsulation 159

9.2.1 Effect of H2O 160

9.3 Classification of Encapsulation Technologies 162

9.3.1 Edge Seal 163

9.3.2 Frit Seal 164

9.3.3 Dam and Fill 166

9.3.4 Face Seal 167

9.3.5 Thin‐Film Encapsulation (TFE) 168

9.4 Summary 170

References 170

10 Flexible OLED Manufacturing 173
Woojae Lee and Jun Souk

10.1 Introduction 173

10.2 Critical Technologies in Flexible OLED Display 174

10.2.1 High‐Temperature PI Film 175

10.2.2 Encapsulation Layer 176

10.2.2.1 Thin‐Film Encapsulation (TFE) Method 176

10.2.2.2 Hyrid Encapsulation Method 177

10.2.2.3 Other Encapsulation Methods 178

10.2.2.4 Measurement of Barrier Performance 179

10.2.3 Laser Lift‐Off 180

10.2.4 Touch Sensor on F‐OLED 181

10.3 Process Flow of F‐OLED 181

10.3.1 PI Film Coating and Curing 181

10.3.2 LTPS TFT Backplane Process 183

10.3.3 OLED Deposition Process 183

10.3.4 Thin‐Film Encapsulation 185

10.3.5 Laser Lift‐Off 185

10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size 185

10.3.7 Touch Sensor Attach 186

10.3.8 Circular Polarizer Attach 186

10.3.9 Module Assembly (Bonding Drive IC) 186

10.4 Foldable OLED 186

10.5 Summary 188

References 189

11A Metal Lines and ITO PVD 193
Hyun Eok Shin, Chang Oh Jeong, and Junho Song

11A.1 Introduction 193

11A.1.1 Basic Requirements of Metallization for Display 193

11A.1.2 Thin‐Film Deposition by Sputtering 195

11A.2 Metal Line Evolution in Past Years of TFT‐LCD 198

11A.2.1 Gate Line Metals 199

11A.2.1.1 Al and Al Alloy Electrode 199

11A.2.1.2 Cu Electrode 201

11A.2.2 Data line (Source/Drain) Metals 202

11A.2.2.1 Data Al Metal 202

11A.2.2.2 Data Cu Metal 203

11A.2.2.3 Data Chromium (Cr) Metal 203

11A.2.2.4 Molybdenum (Mo) Metal 203

11A.2.2.5 Titanium (Ti) Metal 204

11A.3 Metallization for OLED Display 205

11A.3.1 Gate Line Metals 205

11A.3.2 Source/Drain Metals 205

11A.3.3 Pixel Anode 206

11A.4 Transparent Electrode 207

References 208

11B Thin‐Film PVD: Materials, Processes, and Equipment 209
Tetsuhiro Ohno

11B.1 Introduction 209

11B.2 Sputtering Method 210

11B.3 Evolution of Sputtering Equipment for FPD Devices 212

11B.3.1 Cluster Tool for Gen 2 Size 212

11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size 213

11B.3.3 Vertical Cluster Tool for Gen 8 Size 213

11B.4 Evolution of Sputtering Cathode 215

11B.4.1 Cathode Structure Evolution 215

11B.4.2 Dynamic Multi Cathode for LTPS 217

11B.4.3 Cathode Selection Strategy 217

11B.5 Transparent Oxide Semiconductor (TOS) Thin‐Film Deposition Technology 218

11B.5.1 Deposition Equipment for TOS‐TFT 218

11B.5.2 New Cathode Structure for TOS‐TFT 219

11B.6 Metallization Materials and Deposition Technology 221

References 223

11C Thin‐Film PVD (Rotary Target) 225

Marcus Bender

11C 1 Introduction 225

11C.2 Source Technology 227

11C.2.1 Planar Cathodes 227

11C.2.2 Rotary Cathodes 229

11C.2.3 Rotary Cathode Array 230

11C.3 Materials, Processes, and Characterization 232

11C.3.1 Introduction 232

11C.3.2 Backplane Metallization 232

11C.3.3 Layers for Metal‐Oxide TFTs 234

11C.3.4 Transparent Electrodes 236

11C.3.5 Adding Touch Functionality and Improving End‐User Experience 238

References 239

12A Thin‐Film PECVD (AKT) 241
Tae Kyung Won, Soo Young Choi, and John M. White

12A.1 Introduction 241

12A.2 Process Chamber Technology 243

12A.2.1 Electrode Design 243

12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient 243

12A.2.1.2 Gas Flow Control 245

12A.2.1.3 Susceptor 245

12A.2.2 Chamber Cleaning 246

12A.3 Thin‐Film Material, Process, and Characterization 248

12A.3.1 Amorphous Si (a‐Si) TFT 248

12A.3.1.1 Silicon Nitride (SiN) 248

12A.3.1.2 Amorphous Silicon (a‐Si) 253

12A.3.1.3 Phosphorus‐Doped Amorphous Silicon (n+ a‐Si) 257

12A.3.2 Low‐Temperature Poly Silicon (LTPS) TFT 258

12A.3.2.1 Silicon Oxide (SiO) 259

12A.3.2.2 a‐Si Precursor Film (Dehydrogenation) 260

12A.3.3 Metal‐Oxide (MO) TFT 263

12A.3.3.1 Silicon Oxide (SiO) 265

12A.3.4 Thin‐Film Encapsulation (TFE) 269

12A.3.4.1 Barrier Layer (Silicon Nitride) 269

12A.3.4.2 Buffer Layer 271

References 271

12B Thin‐Film PECVD (Ulvac) 273
Masashi Kikuchi

12B.1 Introduction 273

12B.2 Plasma of PECVD 273

12B.3 Plasma Modes and Reactor Configuration 273

12B.3.1 CCP‐Type Reactor 274

12B.3.2 Microwave‐Type Reactor 274

12B.3.3 ICP‐Type Reactor 275

12B.4 PECVD Process for Display 276

12B.4.1 a‐Si Film for a‐Si TFT 276

12B.4.2 a‐Si Film for LTPS 277

12B.4.3 SiNx Film 278

12B.4.4 TEOS SiO2 Film 279

12B.5 PECVD System Overview 279

12B.6 Remote Plasma Cleaning 279

12B.6.1 Gas Flow Style of Remote Plasma Cleaning 281

12B.6.2 Cleaning and Corrosion 281

12B.7 Passivation Layer for OLED 282

12B.7.1 Passivation by Single/Double/Multi‐Layer 282

12B.8 PECVD Deposition for IGZO TFT 283

12B.8.1 Gate Insulator for IGZO TFT 283

12B.8.2 Passivation Film for IGZO TFT 284

12B.9 Particle Generation 284

References 286

13 Photolithography 287
Yasunori Nishimura, Kozo Yano, Masataka Itoh, and Masahiro Ito

13.1 Introduction 287

13.2 Photolithography Process Overview 288

13.2.1 Cleaning 289

13.2.2 Preparation 289

13.2.3 Photoresist Coating 289

13.2.4 Exposure 289

13.2.5 Development 289

13.2.6 Etching 289

13.2.7 Resist Removal 289

13.3 Photoresist Coating 290

13.3.1 Evolution of Photoresist Coating 290

13.3.2 Slit Coating 290

13.3.2.1 Principles of Slit Coating 290

13.3.2.2 Slit‐Coating System 291

13.4 Exposure 292

13.4.1 Photoresist and Exposure 292

13.4.1.1 Photoresist 292

13.4.1.2 Color Resist 292

13.4.1.3 UV Light Source for Exposure 292

13.4.2 General Aspects of Exposure Systems 292

13.4.3 Stepper 293

13.4.4 Projection Scanning Exposure System 294

13.4.5 Mirror Projection Scan System (Canon) 296

13.4.6 Multi‐Lens Projection System (Nikon) 296

13.4.6.1 Multi‐Lens Optics 296

13.4.6.2 Multi‐Lens Projection System 296

13.4.7 Proximity Exposure 297

13.5 Photoresist Development 300

13.6 Inline Photolithography Processing Equipment 301

13.7 Photoresist Stripping 302

13.8 Photolithography for Color Filters 303

13.8.1 Color Filter Structures 303

13.8.1.1 TN 304

13.8.1.2 VA 304

13.8.1.3 IPS 304

13.8.2 Materials for Color Filters 305

13.8.2.1 Black Matrix Materials 305

13.8.2.2 RGB Color Materials 305

13.8.2.3 PS (Photo Spacer) Materials 306

13.8.3 Photolithography Process for Color Filters 307

13.8.3.1 Color Resist Coating 307

13.8.3.2 Exposure 307

13.8.3.3 Development 308

13.8.4 Higher‐Performance Color Filters 309

13.8.4.1 Mobile Applications 309

13.8.4.2 TV Applications 309

References 310

14A Wet Etching Processes and Equipment 311
Kazuo Jodai

14A.1 Introduction 311

14A.2 Overview of TFT Process 312

14A.3 Applications and Equipment of Wet Etching 313

14A.3.1 Applications 313

14A.3.2 Equipment (Outline) 313

14A.3.3 Substrate Transferring System 315

14A.3.4 Dip Etching System 316

14A.3.5 Cascade Rinse System 316

14A.4 Problems Due to Increased Mother Glass Size and Solutions 317

14A.4.1 Etchant Concentration Management 317

14A.4.2 Quick Rinse 317

14A.4.3 Other Issues 318

14A.5 Conclusion 318

References 318

14B Dry Etching Processes and Equipment 319
Ippei Horikoshi

14B.1 Introduction 319

14B.2 Principle of Dry Etching 319

14B.2.1 Plasma 320

14B.2.2 Ions 321

14B.2.3 Radicals 321

14B.3 Architecture for Dry Etching Equipment 322

14B.4 Dry Etching Modes 323

14B.4.1 Conventional Etching Mode and Each Characteristic 324

14B.4.2 Current Etching Mode and Each Characteristic 325

14B.5 TFT Process 325

14B.5.1 a‐Si Process 325

14B.5.2 LTPS Process 326

14B.5.3 Oxide Process 327

References 328

15 TFT Array: Inspection, Testing, and Repair 329
Shulik Leshem, Noam Cohen, Savier Pham, Mike Lim, and Amir Peled

15.1 Defect Theory 329

15.1.1 Typical Production Defects 329

15.1.1.1 Pattern Defects 329

15.1.1.2 Foreign Particles 331

15.1.2 Understanding the Nature of Defects 332

15.1.2.1 Critical and Non‐Critical Defects 332

15.1.2.2 Electrical and Non‐Electrical Defects 333

15.1.3 Effect of Defects on Final FPD Devices and Yields 333

15.2 AOI (Automated Optical Inspection) 334

15.2.1 The Need 334

15.2.2 AOI Tasks, Functions, and Sequences 335

15.2.2.1 Image Acquisition 335

15.2.2.2 Defect Detection 336

15.2.2.3 Defect Classification 336

15.2.2.4 Review Image Grabbing 337

15.2.2.5 Defect Reporting and Judgment 337

15.2.3 AOI Optical Concept 337

15.2.3.1 Image Quality Criteria 338

15.2.3.2 Scan Cameras 339

15.2.3.2.1 Camera Type 339

15.2.3.2.2 Resolution Changer 339

15.2.3.2.3 Backside Inspection 339

15.2.3.3 Scan Illumination 339

15.2.3.3.1 Types of Illumination 339

15.2.3.4 Video Grabbing for Defect Review and Metrology 340

15.2.3.4.1 Review/Metrology Cameras 340

15.2.3.4.2 On‐the‐Fly Video Grabbing 340

15.2.3.4.3 Alternative to Video Images 340

15.2.4 AOI Defect Detection Principles 341

15.2.4.1 Gray Level Concept 342

15.2.4.2 Comparison of Gray Level Values Between Neighboring Cells 342

15.2.4.3 Detection Sensitivity 342

15.2.4.4 Detection Selectivity 344

15.2.5 AOI Special Features 344

15.2.5.1 Detection of Special Defect Types 344

15.2.5.2 Inspection of In‐Cell Touch Panels 345

15.2.5.3 Peripheral Area Inspection 346

15.2.5.4 Mura Defects 346

15.2.5.5 Cell Process Inspection 347

15.2.5.6 Defect Classification 347

15.2.5.7 Metrology: CD/O Measurement 349

15.2.5.8 Automatic Judgment 350

15.2.6 Offline Versus Inline AOI 350

15.2.7 AOI Usage, Application and Trends 351

15.3 Electrical Testing 352

15.3.1 The Need 352

15.3.2 Array Tester Tasks, Functions, and Sequences 353

15.3.2.1 Panel Signal Driving 353

15.3.2.1.1 Shorting Bar Probing Method 354

15.3.2.1.2 Full Contact Probing Method 354

15.3.2.2 Contact or Non‐Contact Sensing 354

15.3.2.2.1 Contact Sensing 355

15.3.2.2.2 Non‐Contact Sensing Methods 355

15.3.2.3 Panel Image Processing and Defect Detection 355

15.3.2.4 Post‐Defect Detection Processes 355

15.3.3 Array Tester System Design Concept 356

15.3.3.1 Signal Driving Probing 357

15.3.3.2 Ultra‐High‐Resolution Testing 357

15.3.3.3 System TACT 358

15.3.3.4 “High‐Channel” Testing 358

15.3.3.5 Advanced Process Technology Testing (AMOLED, FLEX OLED) 358

15.3.4 Array Tester Special Features 359

15.3.4.1 GOA, ASG, and IGD Testing 359

15.3.4.2 Electro Mura Monitoring 359

15.3.4.3 Free‐Form Panel Testing 361

15.3.5 Array Tester Usage, Application, and Trends 361

15.3.5.1 Source Drain Layer Testing for LTPS LCD/OLED 362

15.3.5.2 New Probing Concept 363

15.3.5.3 In‐Cell Touch Panel Testing 363

15.4 Defect Repair 363

15.4.1 The Need 363

15.4.2 Repair System in the Production Process 364

15.4.2.1 In‐Process Repair 364

15.4.2.2 Final Repair 364

15.4.3 Repair Sequence 364

15.4.4 Short‐Circuit Repair Method 365

15.4.4.1 Laser Ablation Concept 365

15.4.4.1.1 Thermal Ablation 366

15.4.4.1.2 Cold Ablation 366

15.4.4.1.3 Photochemical Ablation 366

15.4.4.2 Laser Light Wavelengths and their Typical Applications 366

15.4.4.2.1 Laser Matter Interaction 366

15.4.4.2.2 Using DUV Laser Light (266 nm) for Short‐Circuit Defect Repair 367

15.4.4.2.3 Using Infrared Laser Light (1,064 nm) for Short‐Circuit Defect Repair 367

15.4.4.3.4 Using Green Laser Light (532 nm) for Short‐Circuit Defect Repair 367

15.4.4.3 Typical Applications of the Short‐Circuit Repair Method 367

15.4.4.3.1 Cutting 367

15.4.4.3.2 Welding 368

15.4.5 Open‐Circuit Repair Method 369

15.4.5.1 LCVD (Laser Chemical Vapor Deposition) 369

15.4.5.2 Metal Ink Deposition Repair 370

15.4.5.2.1 Dispensing 370

15.4.5.2.2 Metal Inkjet Deposition 370

15.4.5.2.3 LIFT (Laser‐Induced Forward Transfer) Deposition 371

15.4.5.3 Main Applications of the Deposition Repair (Open‐Circuit Repair) 372

15.4.6 Photoresist (PR) Repair 372

15.4.6.1 Main Applications of the Photoresist Repair 373

15.4.6.2 Photoresist Repair Technology 373

15.4.6.2.1 Using DMD for Patterning 373

15.4.6.2.2 Using FSM for Patterning 373

15.4.7 Special Features of the Repair System 375

15.4.7.1 Line Defect Locator (LDL) 375

15.4.7.2 Parallel Repair Mode for Maximum System Throughput 375

15.4.8 Repair Technology Trends 376

15.4.8.1 Cold Ablation 376

15.4.8.2 Full Automatic Repair Solution 377

15.4.9 Summary 377

16 LCM Inspection and Repair 379
Chun Chang Hung 379

16.1 Introduction 379

16.2 Functional Defects Inspection 379

16.3 Cosmetic Defects Inspection 381

16.4 Key Factors for Proper Inspection 383

16.4.1 Variation Between Inspectors 383

16.4.2 Testing Environments 385

16.4.3 Inspection Distance, Viewing Angle, and Sequence of Test Patterns 385

16.4.4 Characteristics of Product and Components 387

16.5 Automatic Optical Inspection (AOI) 388

16.6 LCM Defect Repair 388

References 391

17 Productivity and Quality Control Overview 393
Kozo Yano, Yasunori Nishimura, and Masataka Itoh

17.1 Introduction 393

17.2 Productivity Improvement 394

17.2.1 Challenges for Productivity Improvement 394

17.2.2 Enlargement of Glass Substrate 395

17.2.2.1 Productivity Improvement and Cost Reduction by Glass Size Enlargement 397

17.3 Yield Management 399

17.3.1 Yield Analysis 399

17.3.1.1 Inspection and Yield 399

17.3.1.2 Failure Mode Analysis 401

17.3.2 Yield Improvement Activity 404

17.3.2.1 Process Yield Improvement 404

17.3.2.2 Systematic Failure Minimization 404

17.3.2.3 Random Failure Minimization by Clean Process 404

17.3.2.4 Yield Improvement by Repairing 406

17.4 Quality Control System 406

17.4.1 Materials (IQC) 407

17.4.2 Facility Control 408

17.4.3 Process Quality Control 408

17.4.3.1 TFT Array Process 409

17.4.3.2 Color Filter Process 410

17.4.3.3 LCD Cell Process 412

17.4.3.4 Modulization Process 412

17.4.4 Organization and Key Issues for Quality Control 413

References 417

18 Plant Architectures and Supporting Systems 419
Kozo Yano and Michihiro Yamakawa

18.1 Introduction 419

18.2 General Issues in Plant Architecture 420

18.2.1 Plant Overview 420

18.2.2 Plant Design Procedure and Baseline 422

18.3 Clean Room Design 423

18.3.1 Clean Room Evolution 423

18.3.2 Floor Structure for Clean Room 424

18.3.3 Clean Room Ceiling Height 424

18.3.4 Air Flow and Circulation Design 427

18.3.5 Cleanliness Control 428

18.3.6 Air Flow Control Against Particle 428

18.3.7 Chemical Contamination Countermeasures 431

18.3.8 Energy Saving in FFU 433

18.4 Supporting Systems with Environmental Consideration 433

18.4.1 Incidental Facilities 433

18.4.2 Water and Its Recycle 434

18.4.3 Chemicals 436

18.4.4 Gases 436

18.4.5 Electricity 437

18.5 Production Control System 437

References 440

19 Green Manufacturing 441
YiLin Wei, Mona Yang, and Matt Chien

19.1 Introduction 441

19.2 Fabrication Plant (Fab) Design 441

19.2.1 Fab Features 441

19.2.2 Green Building Design 442

19.3 Product Material Uses 443

19.3.1 Material Types and Uses 443

19.3.2 Hazardous Substance Management 444

19.3.3 Material Hazard and Green Trend 446

19.3.4 Conflict Minerals Control 446

19.4 Manufacturing Features and Green Management 447

19.4.1 The Manufacturing Processes 447

19.4.2 Greenhouse Gas Inventory 448

19.4.3 Energy Saving in Manufacturing 449

19.4.4 Reduction of Greenhouse Gas from Manufacturing 449

19.4.5 Air Pollution and Control 451

19.4.6 Water Management and Emissions Control 452

19.4.7 Waste Recycling and Reuse 453

19.5 Future Challenges 453

References 454

Index 457

Authors

Jun Souk Shinji Morozumi Fang-Chen Luo Ion Bita