+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

Modeling and Simulation of HVDC Transmission. Energy Engineering- Product Image
Modeling and Simulation of HVDC Transmission. Energy Engineering- Product Image

Modeling and Simulation of HVDC Transmission. Energy Engineering

  • ID: 4537896
  • Book
  • December 2020
  • IET Books

The development of large-scale renewable generation and load electrification call for highly efficient and flexible electric power integration, transmission and interconnection. High Voltage DC (HVDC) transmission technology has been recognized as the key technology for this scenario. HVDC transmissions, including both the line commutated converter (LCC) HVDC and voltage source converter (VSC) HVDC have played an important role in the modern electric power system. However, with the inclusion of power electronic devices, HVDC introduces the characteristics of nonlinearity and different timescales into the traditional electromechanical system and thus careful modeling and simulation of HVDC transmission are essential for power system design, commissioning, operation and maintenance.

This book focuses on the modeling and simulation of HVDC transmission systems. The development of HVDC technologies is briefly introduced, and then the role of modeling and simulation in the research and development of HVDC systems is discussed. The chapters cover the general practice of HVDC modeling and simulation; electromagnetic modeling of LCC HVDC; VSC HVDC system modeling and stability analysis; electromagnetic modeling of DC grids; electromagnetic simulation of HVDC transmission; electromechanical transient simulation of LCC HVDC; electromechanical simulation of VSC HVDC; dynamic phasor modeling of HVDC; small-signal modeling of HVDC systems; hybrid simulation for HVDC; and real-time modeling and simulation for HVDC systems. The simulation algorithms are explained for each model and case studies and application examples are included.

This book is essential reading for engineers and researchers involved with transmission grid construction, as well as advanced students of electrical engineering.

Note: Product cover images may vary from those shown
- Chapter 1: HVDC and the needs for modeling and simulation
- Chapter 2: General practices of HVDC modeling and simulation
- Chapter 3: Electromagnetic modeling of LCC-HVDC
- Chapter 4: VSC system modeling and stability analysis
- Chapter 5: Electromagnetic modeling of DC grid
- Chapter 6: Electromagnetic simulation of HVDC transmission
- Chapter 7: Electromechanical transient simulation of LCC HVDC
- Chapter 8: Electromechanical transient simulation of VSC HVDC
- Chapter 9: Dynamic phasor modeling of HVDC systems
- Chapter 10: Small-signal modeling of HVDC systems
- Chapter 11: Hybrid simulation for HVDC
- Chapter 12: Real-time modeling and simulation for HVDC systems
Note: Product cover images may vary from those shown
Minxiao Han Professor.
North China Electric Power University, Flexible Electric Power Institute, China.

Minxiao Han is a professor and the director of Flexible Electric Power Institute of North China Electric Power University, China. He has been the principal investigator in the key projects consigned by MOST, China and the NSF of China, is a member of CIGRE SC B4, and is a senior member of IEEE and CSEE. He has authored more than 100 referred papers, holds four national patents, and has written five books.

Aniruddha Gole Professor.
University of Manitoba, Canada.

Aniruddha M. Gole is a distinguished professor and NSERC Industrial Research Chair at the University of Manitoba, Canada. In the past, Dr. Gole has worked in the field of DC transmission at Manitoba Hydro and Hydro Quebec in Canada. Dr. Gole is a member of the original development team for the PSCAD/EMTDC program, recipient of the 2007 IEEE PES Nari Hingorani FACTS Award, and a fellow of the IEEE and the Canadian Academy of Engineering.

Note: Product cover images may vary from those shown
Adroll
adroll