+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Analytical Techniques in Forensic Science. Edition No. 1

  • ID: 5185832
  • Book
  • January 2021
  • 464 Pages
  • John Wiley and Sons Ltd

An in-depth text that explores the interface between analytical chemistry and trace evidence 

Analytical Techniques in Forensic Science is a comprehensive guide written in accessible terms that examines the interface between analytical chemistry and trace evidence in forensic science. With contributions from noted experts on the topic, the text features a detailed introduction analysis in forensic science and then subsequent chapters explore the laboratory techniques grouped by shared operating principles. For each technique, the authors incorporate specific theory, application to forensic analytics, interpretation, forensic specific developments, and illustrative case studies.  

Forensic techniques covered include UV-Vis and vibrational spectroscopy, mass spectrometry and gas and liquid chromatography. The applications reviewed include evidence types such as fibers, paint, drugs and explosives. The authors highlight data collection, subsequent analysis, what information has been obtained and what this means in the context of a case. The text shows how analytical chemistry and trace evidence can problem solve the nature of much of forensic analysis. This important text:  

  • Puts the focus on trace evidence and analytical science 
  • Contains case studies that illustrate theory in practice 
  • Includes contributions from experts on the topics of instrumentation, theory, and case examples 
  • Explores novel and future applications for analytical techniques  

Written for undergraduate and graduate students in forensic chemistry and forensic practitioners and researchers, Analytical Techniques in Forensic Science offers a text that bridges the gap between introductory textbooks and professional level literature. 

Note: Product cover images may vary from those shown


List of Contributors


Introduction to Forensic Science

1.1          Forensic Science

1.2          The Forensic Process

1.2.1      Forensic Principles and the Crime Scene

1.2.2      Preparatory Issues in Laboratory Analysis

1.2.3      Interpretation of Forensic Evidence

1.3          Judicial Systems

1.3.1      Criminal vs. Civil Law

1.3.2      Adversarial vs. Inquisitorial System

1.3.3      Rules of Evidence

1.3.4      Types of Evidence

1.3.5      Opinion and Expert Testimony

1.4          The Role of Analytical Chemistry in Forensic Science

1.4.1      Techniques used for Chemical Analysis

2.            Analytical Methodology and Experimental Design

2.1          Scientific Method

2.2          What Do We Mean By Analysis?

2.3          The Stages of Analysis

2.3.1      Quantification

2.4          Analysis Development

2.4.1      Error Estimation

2.4.2      Quality Assurance and Quality Control

2.4.3      Method Development and Experimental Designs

2.4.4      Selecting Critical Variables with Factorial Designs

2.4.5      Modelling the Significant Variables using Response Surface Designs

3              Presumptive Testing

3.1          Drugs

3.1.1      Drugs seizure sampling

3.1.2      Major drug classes

3.1.3      Presumptive tests for drugs

3.2          Firearms Discharge Residue

3.2.1      Firearms Discharge Residue Sampling

3.2.2      Firearms Discharge Residue Presumptive Tests

3.3          Explosives

3.3.1      Explosive Residue Sampling

3.3.2      Explosive Residue Presumptive Tests

3.4          Ethanol (Ethyl Alcohol)

3.4.1      Breath Alcohol Testing

3.4.2      Saliva-Based Testing

3.5          Ignitable Liquid Residues

3.6          Non-Chemical Presumptive Tests

3.6.1      Electronic Detectors      

3.6.2      Canine Detection

4              Sample Preparation

4.1          Sample preparation

4.2          Extraction

4.2.1      Solvent Extraction

4.2.2      Liquid-liquid Extraction

4.2.3      Solid phase Extraction

4.2.4      Solid-phase Microextraction

4.2.5      QuEChERS

4.2.6      Sample Handling Post Extraction

4.3          Sample Preparation for Inorganic Analyses

4.3.1      Total Analysis

4.3.2      Chemical Speciation

4.4          DNA Profiling

4.5          Conclusion

5              The Electromagnetic Spectrum

6              UV-Vis and Fluorescence Spectroscopy

6.1          Forensic Introduction

6.2          Theory

6.2.1      Electronic Transitions

6.2.2      Photoluminescence and Fluorescence

6.2.3      Quantifiation

6.3          Instrumentation

6.3.1      UV-Vis Spectrometers

6.3.2      Fluorescence Spectrometers/Fluorometers

6.3.3      Coupling Techniques

6.3.4      Microspectrophotometers

6.3.5      Hyperspectral Imaging

6.3.6      Filtered Light Examination

6.4          Application to Analyte

6.4.1      Transmission Analysis in Solution

6.4.2      MSP Sample Preparation

6.4.3      Acquiring a Spectrum

6.4.4      Forensic Applications

6.5          Interpretation and Law

6.5.1      Interpreting UV-Vis Spectra

6.5.2      Interpreting Fluorescence Spectra

6.5.3      UV-Vis and Fluorescence Spectroscopy in Court

6.6          Case Studies      

6.6.1      Case Study 1

6.6.2      Case Study 2

6.7          Forensic Developments

7.1          Introduction

7.2          Theory of technique

7.2.1      Basis of technique

7.2.2      Instrumentation

7.2.3      Transmission spectroscopy

7.2.4      Reflectance spectroscopy

7.2.5      Infrared microspectroscopy

7.2.6      Handheld and portable instruments

7.3          Application to analyte

7.3.1      Sampling

7.3.2      Spectrum analysis

7.4          Interpretation and law

7.5          Case studies - Discrimination of acrylic fibres

7.6          Forensic developments

8.            Raman Spectroscopy

8.1.         Forensic introduction

8.2.         Theory

8.2.1.     Raman Scattering

8.2.2.     Modes of Vibration

8.2.3.     Raman Shift

8.2.4.     Raman instrumentation

8.2.5.     Advanced Techniques

8.2.6.     Advantages and Disadvantages of Raman Spectroscopy

8.3.         Application to analyte

8.3.1.     Acquiring a spectrum

8.3.2.     Forensic applications

8.4.         Interpretation and Law

8.4.1.     Interpreting Raman Spectra

8.4.2.     Raman spectroscopy in court

8.5.         Case Studies      

8.5.1.     Case Study 1

8.5.2.     Case Study 2

8.6.         Forensic Developments

9.            Scanning Electron Microscopy in Forensic Analysis

9.1.         Introduction

9.2.         Theory of the technique

9.2.1.     Scanning Electron Microscope

9.2.2.     X-Ray detection

9.2.3.     Operating conditions

9.2.4.     Specimen preparation

9.3.         Application to analyte(s)

9.3.1.     Gunshot Residue

9.3.2.     Glass

9.3.3.     Other samples

9.4.         Interpretation and law

9.4.1.     Evidence evaluation on source level

9.5.         Case study

9.5.1.     GSR – case study

9.5.2.     Glass – comparison and classification problem

9.5.3.     Glass – was the car bulb switched on during accident?

10           Mass spectrometry in forensic science

10.1        Introduction

10.1.1    Forensic Application of Mass Spectrometry

10.2        Theory of Technique

10.2.1    Principles of Mass Spectrometry

10.2.2    Sample Introduction

10.2.3    Modes of Sample Ionisation

10.2.4    Ion Separation – Mass Analysers

10.2.5    Ion Detection

10.2.6    Anatomy of a Mass Spectrum

10.3        Application to Analytes

10.4        Interpretation and law – interpretation of results in forensic and legal context

10.4.1    Chain of Custody

10.4.2    New Forensic Regulations

10.4.3    ID criteria – Screen and Confirmation

10.4.4    Chromatographic Criteria

10.4.5    Mass Spectrometric Identification Criteria

10.5        Case studies

10.5.1    Serial Killing by Poisoning

10.5.2    Surreptitious Insulin Administration

10.6        Forensic developments

10.6.1    Beyond Blood and Urine

10.6.2    High Mass Accuracy Mass Spectrometry

10.6.3    Mobile Mass Spectrometers

11           Isotope Ratio Mass Spectrometry

11.1        Forensic Introduction

11.2        Basis of the Technique

11.2.1    Isotopes

11.2.2    Isotopic Abundance and Delta Notation

11.2.3    Standards and Reference Materials

11.2.4    Isotopic Variability – Fractionation and Mixing

11.2.5    Isotopic Variability of Natural Materials

11.2.6    Instrumentation: Stable Isotope Ratio Mass Spectrometers

11.3        Introduction to the Isotope Ratio Mass Spectrometer

11.3.1    IRMS – Detection and Measurement

11.3.2    Sample Preparation

11.3.3    Bulk Stable Isotope Analysis (BSIA)

11.3.4    Bulk Measurements by Quantitative High Temperature Combustion

11.3.5    Bulk Measurements by Quantitative High Temperature Conversion

11.3.6    Compound Specific Isotope Analysis (CSIA)

11.4        Interpretation

11.5        Case Studies

11.6        Applications in Forensic Science

11.6.1    Distinguishing between Naturally Occurring and synthetic Materials in Doping e.g. Endogenous and Exogenous (Synthetic) Testosterone

11.6.2    Determining Authenticity and Predicting Geographical Origin of Food, Pharmaceuticals and other Materials (e.g. Counterfeiting)

11.6.3    Tracing the Geographic Origin and Movement of Wildlife, Persons and Materials

11.6.4    Identifying the Source of Environmental Contaminants

11.6.5    Determining the Geographical Origin of Plant Materials e.g. Natural Illicit Drugs - Cannabis; Cocaine; and Heroin

11.6.6    Characterising Microorganisms

11.6.7    Determining Synthetic Pathways used to Manufacture Illicit Drugs e.g. Ecstasy and MDMA; Methamphetamine; and Amphetamine

11.6.8    Distinguishing between two or more Samples of a Material to Infer Source or a Common Origin

11.6.9    Distinguishing between two or more Samples of Ignitable Liquids and Chemicals

11.6.10  Determining Source through Association of Starting Materials and End Products e.g. Explosives   34

11.7        Future of IRMS and Stable Isotopic Comparisons 35

12           Chromatographic Separation and Theory

12.1        Introduction

12.2        Chromatography

12.2.1    Planar Chromatography

12.2.2    Column Chromatography

12.3        The Separation Process

12.3.1    Distribution Constant

12.3.2    Hold-up Time (or Volume)

12.3.3    Retention Time (or Volume)

12.3.4    Retention Factor

12.3.5    Separation Factor

12.4        Separation Theory

12.4.1    Plate Theory

12.4.2    Theory versus Rractice: Band Broadening

12.4.3    Rate Theory

12.5        Practical Applications of Chromatographic Theory

12.5.1    Optimising Chromatographic Separations

12.6        Conclusion

13           Gas Chromatography

13.1        Introduction

13.2        Gas Chromatography Components

13.2.1    Mobile Phase System

13.2.2    Sample Injection System

13.2.3    Columns and Chromatographic Separation

13.2.4    Detectors and Detection Systems

13.3        Application to Analyte

13.3.1    Sample Derivatisation

13.3.2    Qualitative Analysis

13.3.3    Quantitative Analysis

13.4        Interpretation and Law

13.5        Case Studies      

13.5.1    Case Study 1

13.5.2    Case Study 2

13.6        Forensic Developments

13.6.1    Multidimensional GC

13.6.2    Portable GC       

14           High Performance Liquid Chromatography and Ultra-high Performance Liquid Chromatography including LC-MS

14.1        Introduction

14.2        Components of an HPLC instrument and their Optimization

14.2.1    Pump and Mixer

14.2.2    Autosampler and Inlet

14.2.3    Injector

14.2.4    Column

14.2.5    Fittings

14.2.6    Mobile Phase

14.2.7    Effect of Temperature/Flow Rate

14.2.8    Detector             

14.3        Related Techniques       

14.3.1    Ion Chromatography

14.3.2    Affinity Chromatography

14.3.3    Chiral Chromatography

14.4        Chromatography Theory

14.5        Detection

14.6        Coupling of LC to MS

14.7        Types of Analytes

14.7.1    Basic Analytes

14.7.2    Acidic Analytes

14.7.3    Proteins

14.7.4    DNA

14.7.5    Chiral Compounds

14.7.7    Low-concentration Analytes

14.8        Accreditation and Method Validation

14.8.1    Use of Internal Standards

14.8.2    Effect of Sample Matrix

14.8.3    Ion Ratios

14.9        Interpretation of Results in Forensic and Legal Context

14.10     Case Studies

14.10.1  Case Report 1 - Postmortem Death Investigation – Poly-drug Overdose

14.10.2  Case Report 2 - Postmortem Death Investigation - No Derivatization Needed for LC-MS

14.10.3  Case Report 3 - Driving Under the Influence of Drugs – Increased sensitivity with LC-MS

14.11     Forensic Developments

14.11.1  Column Switching and 2D-HPLC

14.11.2  Capillary LC

14.11.3  Column-on-a chip Technologies

14.12     Conclusion

15           Capillary and Microchip Electrophoresis

15.1        Capillary Electrophoresis: Introduction

15.2        Microchip-Capillary Electrophoresis

15.2.1    Sample Injection Modes in ME

15.3        Detection Systems

15.4        CE and ME in Forensic Analysis

15.5        Case Study: Lab-on-a-chip (LOC) Screening of Methamphetamine and Pseudoephedrine in Clandestine Laboratory Samples

15.5.1    Screening of Methamphetamine and Pseudoephedrine from Clandestine Laboratories

15.5.2    Interferents

15.5.3    Simulated Surface Swabs

15.6        Conclusions

Note: Product cover images may vary from those shown
Rosalind Wolstenholme Sheffield Hallam University.

Sue Jickells University of East Anglia.

Shari Forbes University of Quebec Trois Rivieres.
Note: Product cover images may vary from those shown