+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

Fermentation Processes: Emerging and Conventional Technologies. Edition No. 1

  • ID: 5186257
  • Book
  • March 2021
  • 240 Pages
  • John Wiley and Sons Ltd
1 of 3

Fermentation Processes: Emerging and Conventional Technologies is focused on enhancing fermentation processes under conventional and non conventional conditions. 
The application of emerging technologies (e.g. ultrasounds, pulsed electric fields, microwaves, etc.) to increase the accessibility and bioavailability of the substrates by microorganisms during fermentation has been demonstrated 
through numerous research works. These technologies have the advantages over conventional ones (e.g. grinding) of consuming less energy, reducing the processing time, along with using less and “green” solvents. Increasing the 
accessibility of the substrates has as a consequence an improved availability for the microorganisms and therefore enhanced productivity. The application of these non-conventional (emerging) technologies could be at sub-lethal levels before (inoculum) or during the fermentation process, also called as microbial stimulation, which increases the assimilation of substrates, release of enzymes in the medium for substrate hydrolysis, and other benefits. All
together, lead to promote the microbial growth, and enhance the fermentation process. In addition to the application of emerging technologies, enhancing fermentation at conventional conditions by changing the medium composition, processing parameters, etc. are also discussed.

Note: Product cover images may vary from those shown
2 of 3

Chapter 1. Introduction to conventional fermentation processes

1
1. Bioprocesses

1.1.1. Production of microbial biomass

1.1.2. Production of microbial metabolites

1.1.3. Production of microbial enzymes

1.1.4. Production of recombinant proteins

1.1.5. Production of microbial plasmids

1.1.6. Bioconversion

1.2. Energetic metabolism

1.2.1. Energy transfer and redox reactions

1.2.2. Aerobic respiration

1.2.3. Anaerobic respiration

1.2.4. Fermentation

1.3. Microorganisms used in fermentation processes

1.3.1. Bacteria

1.3.2. Fungi

1.4. Fermentation technology

1.5. Conclusions

1.6. References

Chapter 2. Current developments in industrial fermentation processes

2.1. Introduction

2.2. Main achievements in industrial fermentation

2.2.1. Fermentation processes in food industry

2.2.1.1. Alcoholic beverages

2.2.1.2. Enzymes

2.2.2. Fermentation processes in chemical industry

2.2.2.1. Biofuels

2.2.2.2. Organic acids

2.2.2.3. Triacylglycerols and Polyhydroxyalkanoates

2.2.2.4. Syngas fermentation

2.2.3. Fermentation processes in the pharmaceutical industry

2.2.3.1. Drugs

2.2.3.2. Recombinant proteins

2.3. Current developments in industrial fermentation

2.3.1. Microorganisms

2.3.2. Fermentation Media

2.3.2.1. Types of media sources

2.3.3. Fermentation systems

2.3.3.1. Solid-state fermentation bioreactors

2.3.3.2. Ultrasonic fermentation process

2.3.3.3. Electro fermentation

2.3.4. Fermentation optimization

2.3.5. Fermentation process modeling

2.3.5.1. Mechanistic models

2.3.5.2. Computational fluid dynamics (CFD)

2.3.6. Inhibition of fermentation processes

2.3.6.1. Substrate inhibition

2.3.6.2. pH inhibition

2.3.6.3. Inhibition by un-dissociated acids

2.3.6.4. Temperature inhibition

2.3.6.5. Nitrogen inhibition

2.3.6.6. Inhibition by phosphate

2.3.6.7. Inhibition by sulfide

2.3.6.8. Inhibition by lactic acid bacteria

2.3.6.9. Inhibition by metals

2.3.6.10. Inhibition by phenolic and furanic mixtures

2.4. Conclusions

2.5. References

Chapter 3. Culture condition changes for enhancing fermentation processes

3.1. Introduction

3.1.1. Fermentation

3.2. Culture media used for fermentation

3.2.1. The culture media purpose

3.2.2. Media types

3.2.3. Culture media: a quantitative approach

3.2.4. Culture media: a compositional approach

3.2.4.1. Water

3.2.4.2. Energy sources

3.2.4.3. Carbon sources

3.2.4.4. Examples of commonly used carbon sources

3.2.4.5. Nitrogen sources

3.2.4.6. Minerals

3.2.4.7. Chelators

3.2.4.8. Growth factors

3.2.4.9. Buffers

3.2.4.10. Precursors and metabolic regulators to media

3.2.4.11. Precursors and inhibitors

3.2.5. Impact of culture conditions on fermentation processes

3.2.5.1. The temperature

3.2.5.2. The pH

3.2.5.3. The cell concentration

3.2.5.4. The carbon dioxide

3.2.5.5. The ethanol

3.3.1. Pasteur effect

3.3.2. Crabtree effect

3.3.3. Custer effect

3.3.4 Oxygen requirements

3.4. Conclusions

3.5. References

Chapter 4. Emerging technologies and their mechanism of action on fermentation

4.1. Introduction

4.2. High hydrostatic pressure (HHP) processing

4.3. Ultrasound (US)

4.4. Pulsed Electric Fields

4.5. Microwaves (MV)

4.6. Conclusions

4.7. References

Chapter 5. Biomass fractionation using emerging technologies

5.1. Introduction

5.2. Ultrasound application for biomass fractionation

5.3. Microwave application for biomass fractionation

5.4. Pulsed-electric fields application for biomass fractionation

5.5. Enzyme-assisted fractionation of biomass

5.6. Supercritical fluid fractionation of biomass

5.7. Conclusions

5.8. References

Chapter 6. Enhancing microbial growth using emerging technologies

6.1. Introduction             

6.2. Microbial stimulation using electric fields

6.3. Microbial stimulation using ultrasounds

6.4. Microbial stimulation using high pressure

6.5. Conclusions

6.6. References

Note: Product cover images may vary from those shown
3 of 3
Mohamed Koubaa
Francisco Barba
Shahin Roohinejad
Note: Product cover images may vary from those shown
Adroll
adroll