+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

CubeSat Antenna Design. Edition No. 1. JPL Space Science and Technology Series

  • ID: 5212119
  • Book
  • March 2021
  • 352 Pages
  • John Wiley and Sons Ltd
1 of 3

Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL)

CubeSats - nanosatellites built to standard dimensions of 10cm x 10 cm x cm - are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective.

This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume:

  • Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication
  • Helps readers learn how to develop antennas for future CubeSat missions
  • Provides key information on the effect of space environment on antennas to inform design steps
  • Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas

CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.

Note: Product cover images may vary from those shown
2 of 3

Contributors

Preface

Chapter 1 Introduction

1.1.         Description of CubeSats 2

1.1.1. Introduction          2

1.1.2. Form factors          4

1.1.2. Brief introduction to CubeSat subsystems 6

1.1.2.1. Attitude control 6

1.1.2.2. Propulsion          7

1.1.2.3. Power   8

1.1.2.4. Telecommunication        10

1.2.2. CubeSat Antennas              12

1.2.2.1. Low gain antennas          12

1.2.2.2. Medium gain antennas  14

1.2.2.3. High gain antennas         16

1.2.3. Effect of space environment on antennas 28

1.2.3.1. Radiation             28

1.2.3.2. Material outgassing        29

1.2.3.3. Temperature change      30

1.2.3.4. Multipacting breakdown              31

1.2.         Conclusion          32

Acknowledgements        32

References         33

Chapter 2 Mars Cube One

2.1.         Mission description         2

2.2.         IRIS radio             5

2.3.         X-band subsystem           10

2.3.1.     Frequency allocation      10

2.3.2.     Near Earth communications using low gain antennas       10

2.3.2.1 Antenna requirements   10

2.3.2.2 Antenna solution and performance           11

2.3.3.     Mars-to-Earth communications 15

2.3.3.1 Telecommunication description: Uplink and Downlink from Mars 15

2.3.3.2 Mars Low gain antennas 15

2.3.3.2 High gain antenna             18

2.4.         Entry, Descent, and Landing UHF link       35

2.4.1. State-of-the-art of UHF deployable CubeSat antennas         37

2.4.1.1 Four monopole antenna 37

2.4.1.2 Helical antenna  37

2.4.1.3 Patch antenna    38

2.4.2 Circularly polarized loop antenna concept  39

2.4.2.1 Loop antenna radiation and polarization 39

2.4.2.2 Infinite baluns design and shielded loop  40

2.4.2.3 Feeding structure              41

2.4.3 Mechanical Configuration and Deployment scheme              42

2.4.4 Simulation and measurements       47

2.4.4 In-flight performance          50

2.5.         Conclusion          52

Acknowledgements        53

Chapter 3 RADAR in a CubeSat: RainCube

3.1.         Mission description         2

3.2.         Deployable high-gain antenna    6

3.2.1. State of the art      6

3.2.1.1 Inflatable antennas          6

3.2.1.2. Deployable reflectarray antennas             6

3.2.1.3. Deployable mesh reflector antennas       8

3.2.2. Parabolic reflector antenna design               12

3.2.2.1 Paraboloidal reflector     12

3.2.2.2 Dual-reflector antennas 13

3.2.2. RainCube high-gain antenna           15

3.2.2.1 Antenna choice: Cassegrain reflector        15

3.2.2.2 Antenna description        15

3.2.2.3. Perfect paraboloid antenna         15

3.2.2.4. Unfurlable paraboloid with ribs and mesh structures       21

3.2.2.5. Antenna measurement results   30

3.2.3. Mechanical deployment   33

3.2.4. Design and Testing for the Space Environment       37

3.2.5. In-flight performance        41

3.3.         Telecommunication challenge    43

3.4.         Conclusion          46

Acknowledgements        47

References         48

Chapter 4 One Meter Reflectarray Antenna: OMERA

4.1.         Introduction       2

4.2.         Reflectarray Antennas   5

4.2.1. Introductions to reflectarray           5

4.2.2. Advantages of reflectarray              5

4.2.3. Drawbacks of reflectarray 5

4.2.2. State of the art      6

4.3.         OMERA 9

4.3.1. Antenna description           9

4.3.2. Deployable feed  10

4.3.3. Reflectarray design             14

4.3.4 Deployment accuracy          16

4.3.5 Effect of struts       20

4.3.6 Predicted gain and efficiency           20

4.3.6 Prototype and measurements        22

4.4.         Conclusion          25

Acknowledgements        26

References         27

Chapter 5 X/Ka-band One Meter Mesh Reflector for 12U-class CubeSat

5.1.         Introduction       3

5.2.         Mechanical Design          6

5.2.1. Trade studies        6

5.2.1.1 Design goals        6

5.2.1.2. Rigid      6

5.2.1.3. Elastic composite             6

5.2.1.4. Mesh    7

5.2.2. Structural design of the reflector  7

5.2.2.1 Ribs         8

5.2.2.2 Hub         9

5.2.2.3 Battens  10

5.2.2.4 Nets        10

5.2.2.5 Perimeter Truss 12

5.2.3. Deployment          12

5.2.3.1 Boom design and deployment     12

5.2.3.2 Reflector deployment     13

5.2.3.3 Deployment issues           14

5.3.         X/Ka RF design  15

5.3.1 Antenna configuration and simulation model           15

5.3.2. X-band mesh reflector       17

5.3.3 Ka-band mesh reflector      23

5.3.4 X/Ka-band mesh reflector 28

5.4.         Conclusion          29

Acknowledgements        30

References         31

Chapter 6 Inflatable antenna for CubeSat

6.1.         Introduction       2

6.2.         Inflatable high gain antenna        3

6.2.1. State of the art      3

6.2.1.1. History of inflatable antennas research and experiments 3

6.2.1.2. History of the inflatable antenna for CubeSat concept     5

6.2.2. Inflatable antenna design at X-Band            8

6.2.2.1 Inflatable antenna at X-Band: initial design and lessons learned    8

6.2.2.2 Inflatable antenna at X-Band final design: reflector and feed placement   10

6.2.2.3 Antenna measurements 12

6.2.3. Structural design  13

6.2.4. Inflation and On-orbit Rigidization 13

6.3.         Spacecraft Design Challenges     19

6.4.         Conclusion          21

Acknowledgements        22

6.5.         References         23

Chapter 7 High aperture efficiency all-metal Patch Array

7.1.         Introduction       2

7.2.         State of the art  4

7.3.         Dual-band circularly polarized 8×8 patch array    9

7.3.1. Requirements       9

7.3.2. Unit cell optimization         9

7.3.3. 8×8 patch array     13

7.3.4. Comparison with state-of-the-art 19

7.3.5. Other array configurations               20

7.4.         Conclusion          21

Acknowledgements        22

References         23

Chapter 8 Metasurface antennas: Flat antennas for small satellites

8.1.         Introduction       2

8.2.         Modulated metasurface antennas           2

8.2.1. State of the art: Pros and cons       2

8.2.2. Design of modulated metasurface antennas            6

8.2.3
300 GHz Silicon micro-machined MTS antenna       13

8.2.4. Ka-band metal-only telecommunication antenna  21

8.3.         Beam synthesis using holographic metasurface antennas              29

8.4.1. Introduction          29

8.4.1. Examples holographic metasurface antennas          32

8.4.3. W-band pillbox beam steering metasurface antenna           35

8.4.         Conclusion          45

Acknowledgements        49

References         50

Note: Product cover images may vary from those shown
3 of 3
Nacer Chahat
Note: Product cover images may vary from those shown
Adroll
adroll