Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL)
CubeSats - nanosatellites built to standard dimensions of 10cm x 10 cm x cm - are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective.
This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume:
- Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication
- Helps readers learn how to develop antennas for future CubeSat missions
- Provides key information on the effect of space environment on antennas to inform design steps
- Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas
CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.
Contributors
Preface
Chapter 1 Introduction
1.1. Description of CubeSats 2
1.1.1. Introduction 2
1.1.2. Form factors 4
1.1.2. Brief introduction to CubeSat subsystems 6
1.1.2.1. Attitude control 6
1.1.2.2. Propulsion 7
1.1.2.3. Power 8
1.1.2.4. Telecommunication 10
1.2.2. CubeSat Antennas 12
1.2.2.1. Low gain antennas 12
1.2.2.2. Medium gain antennas 14
1.2.2.3. High gain antennas 16
1.2.3. Effect of space environment on antennas 28
1.2.3.1. Radiation 28
1.2.3.2. Material outgassing 29
1.2.3.3. Temperature change 30
1.2.3.4. Multipacting breakdown 31
1.2. Conclusion 32
Acknowledgements 32
References 33
Chapter 2 Mars Cube One
2.1. Mission description 2
2.2. IRIS radio 5
2.3. X-band subsystem 10
2.3.1. Frequency allocation 10
2.3.2. Near Earth communications using low gain antennas 10
2.3.2.1 Antenna requirements 10
2.3.2.2 Antenna solution and performance 11
2.3.3. Mars-to-Earth communications 15
2.3.3.1 Telecommunication description: Uplink and Downlink from Mars 15
2.3.3.2 Mars Low gain antennas 15
2.3.3.2 High gain antenna 18
2.4. Entry, Descent, and Landing UHF link 35
2.4.1. State-of-the-art of UHF deployable CubeSat antennas 37
2.4.1.1 Four monopole antenna 37
2.4.1.2 Helical antenna 37
2.4.1.3 Patch antenna 38
2.4.2 Circularly polarized loop antenna concept 39
2.4.2.1 Loop antenna radiation and polarization 39
2.4.2.2 Infinite baluns design and shielded loop 40
2.4.2.3 Feeding structure 41
2.4.3 Mechanical Configuration and Deployment scheme 42
2.4.4 Simulation and measurements 47
2.4.4 In-flight performance 50
2.5. Conclusion 52
Acknowledgements 53
Chapter 3 RADAR in a CubeSat: RainCube
3.1. Mission description 2
3.2. Deployable high-gain antenna 6
3.2.1. State of the art 6
3.2.1.1 Inflatable antennas 6
3.2.1.2. Deployable reflectarray antennas 6
3.2.1.3. Deployable mesh reflector antennas 8
3.2.2. Parabolic reflector antenna design 12
3.2.2.1 Paraboloidal reflector 12
3.2.2.2 Dual-reflector antennas 13
3.2.2. RainCube high-gain antenna 15
3.2.2.1 Antenna choice: Cassegrain reflector 15
3.2.2.2 Antenna description 15
3.2.2.3. Perfect paraboloid antenna 15
3.2.2.4. Unfurlable paraboloid with ribs and mesh structures 21
3.2.2.5. Antenna measurement results 30
3.2.3. Mechanical deployment 33
3.2.4. Design and Testing for the Space Environment 37
3.2.5. In-flight performance 41
3.3. Telecommunication challenge 43
3.4. Conclusion 46
Acknowledgements 47
References 48
Chapter 4 One Meter Reflectarray Antenna: OMERA
4.1. Introduction 2
4.2. Reflectarray Antennas 5
4.2.1. Introductions to reflectarray 5
4.2.2. Advantages of reflectarray 5
4.2.3. Drawbacks of reflectarray 5
4.2.2. State of the art 6
4.3. OMERA 9
4.3.1. Antenna description 9
4.3.2. Deployable feed 10
4.3.3. Reflectarray design 14
4.3.4 Deployment accuracy 16
4.3.5 Effect of struts 20
4.3.6 Predicted gain and efficiency 20
4.3.6 Prototype and measurements 22
4.4. Conclusion 25
Acknowledgements 26
References 27
Chapter 5 X/Ka-band One Meter Mesh Reflector for 12U-class CubeSat
5.1. Introduction 3
5.2. Mechanical Design 6
5.2.1. Trade studies 6
5.2.1.1 Design goals 6
5.2.1.2. Rigid 6
5.2.1.3. Elastic composite 6
5.2.1.4. Mesh 7
5.2.2. Structural design of the reflector 7
5.2.2.1 Ribs 8
5.2.2.2 Hub 9
5.2.2.3 Battens 10
5.2.2.4 Nets 10
5.2.2.5 Perimeter Truss 12
5.2.3. Deployment 12
5.2.3.1 Boom design and deployment 12
5.2.3.2 Reflector deployment 13
5.2.3.3 Deployment issues 14
5.3. X/Ka RF design 15
5.3.1 Antenna configuration and simulation model 15
5.3.2. X-band mesh reflector 17
5.3.3 Ka-band mesh reflector 23
5.3.4 X/Ka-band mesh reflector 28
5.4. Conclusion 29
Acknowledgements 30
References 31
Chapter 6 Inflatable antenna for CubeSat
6.1. Introduction 2
6.2. Inflatable high gain antenna 3
6.2.1. State of the art 3
6.2.1.1. History of inflatable antennas research and experiments 3
6.2.1.2. History of the inflatable antenna for CubeSat concept 5
6.2.2. Inflatable antenna design at X-Band 8
6.2.2.1 Inflatable antenna at X-Band: initial design and lessons learned 8
6.2.2.2 Inflatable antenna at X-Band final design: reflector and feed placement 10
6.2.2.3 Antenna measurements 12
6.2.3. Structural design 13
6.2.4. Inflation and On-orbit Rigidization 13
6.3. Spacecraft Design Challenges 19
6.4. Conclusion 21
Acknowledgements 22
6.5. References 23
Chapter 7 High aperture efficiency all-metal Patch Array
7.1. Introduction 2
7.2. State of the art 4
7.3. Dual-band circularly polarized 8×8 patch array 9
7.3.1. Requirements 9
7.3.2. Unit cell optimization 9
7.3.3. 8×8 patch array 13
7.3.4. Comparison with state-of-the-art 19
7.3.5. Other array configurations 20
7.4. Conclusion 21
Acknowledgements 22
References 23
Chapter 8 Metasurface antennas: Flat antennas for small satellites
8.1. Introduction 2
8.2. Modulated metasurface antennas 2
8.2.1. State of the art: Pros and cons 2
8.2.2. Design of modulated metasurface antennas 6
8.2.3
300 GHz Silicon micro-machined MTS antenna 13
8.2.4. Ka-band metal-only telecommunication antenna 21
8.3. Beam synthesis using holographic metasurface antennas 29
8.4.1. Introduction 29
8.4.1. Examples holographic metasurface antennas 32
8.4.3. W-band pillbox beam steering metasurface antenna 35
8.4. Conclusion 45
Acknowledgements 49
References 50