+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

PRINTER FRIENDLY

Water-Quality Engineering in Natural Systems. Fate and Transport Processes in the Water Environment. Edition No. 3

  • ID: 5227417
  • Book
  • May 2021
  • 464 Pages
  • John Wiley and Sons Ltd
1 of 3
This textbook describes in detail the fundamental equations that govern the fate and transport of contaminants in the environment, and covers the application of these equations to engineering design and environmental impact analysis relating to contaminant discharges into rivers, lakes, wetlands, groundwater, and oceans. The third edition provides numerous end-of-chapter problems and an expanded solutions manual.  Also introduced in this edition are PowerPoints slides for all chapters so that instructors have a ready-made course.

Key distinguishing features of this book include: detailed coverage of the science behind water-quality regulations, state-of-the-art methods for calculating total maximum daily loads (TMDLs) for the remediation of impaired waters, modeling and control of nutrient levels in lakes and reservoirs, design of constructed treatment wetlands, design of groundwater remediation systems, design of ocean outfalls, control of oil spills in the ocean, and the design of systems to control the quality of surface runoff from watersheds into their receiving waters. In addition, the entire book is updated to provide the latest advances in the field of water-quality control. For example, concepts such as mixing zones are expanded to include physical nature and regulatory importance of mixing zones, practical aspects of outfall and diffuser design are also included, specific details of water-quality modeling are updated to reflect the latest developments on this topic, and new findings relating to priority and emerging pollutants are added.
Note: Product cover images may vary from those shown
2 of 3

1 Introduction 1

1.1 Background . 1

1.2 Sources of Water Pollution . 3

1.2.1 Point Sources 3

1.2.1.1 Domestic wastewater discharges 3

1.2.1.2 Sanitary sewer over

ows 4

1.2.1.3 Combined sewer over

ows 4

1.2.1.4 Stormwater discharges 5

1.2.1.5 Industrial discharges . 5

1.2.1.6 Spills . 5

1.2.2 Nonpoint Sources 6

1.2.2.1 Agricultural runoff 6

1.2.2.2 Livestock . 7

1.2.2.3 Urban runoff . 7

1.2.2.4 Landlls . 8

1.2.2.5 Recreational activities 8

1.3 Control of Water Pollution 8

2 Water Quality 11

2.1 Introduction . 11

2.2 Physical Measures . 11

2.2.1 Flow Conditions 12

2.2.2 Substrate 14

2.2.3 In-Stream Habitat . 15

2.2.4 Riparian Habitat 16

2.2.5 Thermal Pollution . 17

2.3 Chemical Measures . 17

2.3.1 Dissolved Oxygen 18

2.3.2 Biochemical Oxygen Demand . 21

2.3.3 Suspended Solids 24

2.3.4 Nutrients 25

2.3.4.1 Nitrogen . 26

2.3.4.2 Phosphorus 28

2.3.5 Metals 29

2.3.6 Synthetic Organic Chemicals . 30

2.3.6.1 Pesticides . 30

2.3.6.2 Volatile organic compounds . 31

2.3.7 Radionuclides 31

2.3.8 pH 32

2.4 Biological Measures . 32

2.4.1 Human Pathogenic Microorganisms . 33

2.4.2 Indicator Organisms 39

2.4.3 Biological Integrity . 43

Problems . 44

3 Fundamentals of Fate and Transport 47

3.1 Introduction . 47

3.2 The Advection-Diffusion Equation 47

3.2.1 Nondimensional Form . 52

3.2.2 Transformations of the Diffusion Equation 54

3.2.2.1 Conservative tracers . 54

3.2.2.2 Non-conservative tracers with  rst-order decay 55

3.2.3 Moment Property of the Diffusion Equation . 56

3.3 Fundamental Solutions of the Advection-Diffusion Equation 58

3.3.1 Advection and Diffusion in One Dimension . 58

3.3.1.1 Spatially and temporally distributed sources . 62

3.3.1.2 Impermeable boundaries 67

3.3.1.3 Continuous plane source 71

3.3.2 Advection and Diffusion in Two-Dimensions . 77

3.3.2.1 Spatially and temporally distributed sources . 78

3.3.2.2 Continuous line source in

owing environment 79

3.3.2.3 Continuous plane sources 81

3.3.3 Advection and Diffusion in Three-Dimensions 84

3.3.3.1 Spatially and temporally distributed sources . 86

3.3.3.2 Plane source . 86

3.3.3.3 Instantaneous point source in shear

ow 87

3.3.3.4 Continuous point source with constant diffusion coefficient . 89

3.3.3.5 Continuous point source with variable diffusion coefficient 94

3.3.3.6 Instantaneous line source 95

3.3.3.7 Instantaneous volume source 96

3.4 Advection and Diffusion of Heat . 97

3.5 Transport of Suspended Particles . 98

3.6 Fate and Transport of Microorganisms in Natural Waters . 101

3.7 Turbulent Diffusion . 102

3.7.1 Relationship of Turbulent Diffusion Coefficient to Velocity Field . 103

3.7.2 Eulerian Approximation 106

3.8 Dispersion 110

Problems . 116

4 Rivers and Streams 127

4.1 Introduction . 127

4.2 Transport Processes 130

4.2.1 Initial Mixing 130

4.2.2 Longitudinal Dispersion 138

4.2.2.1 Field measurement 139

4.2.2.2 Empirical estimates . 142

4.3 Models of Spills . 146

4.3.1 Substances with First-Order Decay 146

4.3.1.1 Instantaneous release 147

4.3.1.2 Continuous release 151

4.3.2 Spills of Volatile Organic Compounds 152

4.4 Models of Dissolved Oxygen 156

4.4.1 Oxygen Demand of Wastewater 157

4.4.2 Reaeration . 158

4.4.3 Streeter-Phelps Model . 162

4.4.4 Other Considerations . 168

4.4.4.1 Nitrification . 168

4.4.4.2 Photosynthesis, respiration, and benthic oxygen demand 175

4.4.4.3 Distributed sources of BOD . 179

4.4.5 Chapra-Di Toro Model . 182

4.4.6 Empirical Models 187

4.4.7 Numerical Models . 187

4.5 Models of Nutrients 187

4.6 Models of Pathogens 188

4.7 Contaminant Loads . 190

4.7.1 Total Maximum Daily Loads . 191

4.7.1.1 Derivation of the load duration curve . 191

4.7.1.2 Applications of the load duration curve 195

4.7.1.3 Other TMDL approaches 202

4.7.2 Long-Term Contaminant Loads 203

4.8 Management and Restoration . 207

4.8.1 Nonstructural Techniques . 207

4.8.2 Structural Techniques . 209

Problems . 213

5 Groundwater 227

5.1 Introduction . 227

5.2 Contaminant Sources 228

5.2.1 Septic Tanks 228

5.2.2 Leaking Underground Storage Tanks . 230

5.2.3 Land Application of Wastewater . 230

5.2.4 Irrigation Return Flow . 231

5.2.5 Solid Waste Disposal Sites . 234

5.2.6 Waste Disposal Injection Wells 235

5.2.7 Agricultural Operations 235

5.3 Fate and Transport Models 235

5.3.1 Instantaneous Line Source . 239

5.3.2 Continuous Line Source 240

5.3.3 Continuous Plane Source . 242

5.3.4 Continuous Point Source 245

5.3.5 Consideration of Uncertainty . 246

5.4 Transport Processes 246

5.5 Fate Processes . 257

5.5.1 Sorption . 257

5.5.2 First-Order Decay . 266

5.5.3 Combined Sorption and Decay 268

5.5.4 Biocolloids . 270

5.5.4.1 Conventional colloid  ltration theory . 270

5.5.4.2 Modified colloid ltration theory 271

5.5.4.3 Accounting for dieoff 271

5.6 Nonaqueous-Phase Liquids . 272

5.6.1 Residual Saturation 274

5.6.2 Raoult's Law 276

5.6.2.1 Effects on saturation vapor pressure 276

5.6.2.2 Effects on saturation concentration 277

5.6.2.3 Soil samples . 280

5.7 Monitoring Wells 281

5.8 Remediation of Subsurface Contamination 287

5.8.1 Remediation Goals . 288

5.8.1.1 Vadose zone . 288

5.8.1.2 Saturated zone 288

5.8.2 Remediation Strategies 289

5.8.2.1 Free-product recovery 290

5.8.2.2 Excavation and disposal . 293

5.8.2.3 Soil-vapor extraction 294

5.8.2.4 Bioventing 300

5.8.2.5 Air sparging . 300

5.8.2.6 Pump-and-treat systems 301

5.8.2.7 Bioremediation 309

5.8.2.8 In situ reaction walls 310

5.8.2.9 In situ containment . 310

5.8.2.10 Natural attenuation . 312

Problems . 313

6 Watersheds 323

6.1 Introduction . 323

6.2 Urban Watersheds . 324

6.2.1 Sources of Pollution 326

6.2.2 Fate and Transport Processes . 329

6.2.2.1 Event mean concentration model 330

6.2.2.2 Buildup-washoff models . 337

6.2.3 Stormwater Control Measures . 340

6.2.3.1 Source control measures . 341

6.2.3.2 Hydrologic modifications 342

6.2.3.3 Attenuation of pollutants 346

6.2.3.4 Collection system pollution control . 348

6.2.3.5 Detention-retention facilities 349

6.3 Agricultural Watersheds 354

6.3.1 Sources of Pollution 356

6.3.2 Fate and Transport Processes . 358

6.3.2.1 Erosion 359

6.3.2.2 Soil pollution . 369

6.3.3 Best Management Practices 376

6.3.3.1 Cropping practices 377

6.3.3.2 Integrated pest management 378

6.3.3.3 Nutrient management 378

6.3.3.4 Terraces and diversions . 379

6.3.3.5 Critical area treatment . 379

6.3.3.6 Sediment basins and detention-retention ponds 380

6.3.3.7 Animal waste storage and treatment 380

6.3.3.8 Livestock exclusion fences 381

6.3.3.9 Filter strips and  eld borders 381

6.3.3.10 Wetland rehabilitation 382

6.3.3.11 Riparian buffer zones 382

6.3.3.12 Irrigation water management 382

6.3.3.13 Stream bank stabilization 383

6.3.3.14 Range and pasture management 383

6.4 Airsheds . 384

Problems . 386

7 Lakes and Reservoirs 389

7.1 Introduction . 389

7.2 Physical Processes . 393

7.2.1 Circulation . 393

7.2.2 Sedimentation . 395

7.2.3 Light Penetration 397

7.3 Eutrophication . 399

7.3.1 Biomass-Nutrient Relationships 401

7.3.2 Measures of Trophic State . 405

7.3.3 Depth of Anoxia 410

7.4 Thermal Stratication . 411

7.4.1 Layer Characteristics 413

7.4.2 Gravity Circulation 413

7.4.3 Water-Quality Impacts . 415

7.4.4 Measures of Mixing Potential . 416

7.4.4.1 Richardson number . 416

7.4.4.2 Densimetric Froude number . 417

7.4.5 Articial Destratication . 418

7.5 Water-Quality Models . 420

7.5.1 Zero-Dimensional (Completely Mixed) Model 420

7.5.1.1 Conservation of mass model 420

7.5.1.2 Conservation of energy model . 424

7.5.2 One-Dimensional (Vertical) Models 427

7.5.2.1 Conservation of mass model 427

7.5.2.2 Conservation of energy model . 429

7.5.2.3 Estimation of the vertical diffusion coefficient . 431

7.5.3 Two-Dimensional Models . 435

7.6 Management and Restoration . 439

7.6.1 Control of Eutrophication . 439

7.6.1.1 Control of point sources . 440

7.6.1.2 Control of nonpoint sources . 440

7.6.1.3 Chemical treatments for phosphorus 440

7.6.1.4 Limitation of internal loading 440

7.6.1.5 Control of algal development. 442

7.6.2 Control of dissolved oxygen concentrations . 442

7.6.2.1 Artificial circulation . 442

7.6.2.2 Water fountains . 444

7.6.2.3 Hypolimnetic aeration 444

7.6.2.4 Oxygen injection . 444

7.6.2.5 Pump-and-baffle aeration system 445

7.6.2.6 Snow removal to increase light penetration 445

7.6.3 Control of Acidity . 445

7.6.4 Control of Aquatic Plants . 446

Problems . 449

8 Wetlands 457

8.1 Introduction . 457

8.2 Natural Wetlands 457

8.2.1 Classification 458

8.2.1.1 Marshes 458

8.2.1.2 Swamps 459

8.2.1.3 Bogs 461

8.2.1.4 Fens 462

8.2.2 Delineation of Wetlands 462

8.2.2.1 Vegetation 463

8.2.2.2 Soils 466

8.2.2.3 Hydrology 466

8.2.3 Water Budget 466

8.2.3.1 Net surface water in

ow . 469

ix

8.2.3.2 Net groundwater in

ow . 469

8.2.3.3 Evapotranspiration . 469

8.3 Constructed Treatment Wetlands . 469

8.3.1 Classification 470

8.3.1.1 Free water surface wetlands . 472

8.3.1.2 Horizontal subsurface

ow wetlands 473

8.3.1.3 Vertical

ow wetlands 475

8.3.2 Design of FWS Wetlands . 475

8.3.2.1 Hydrology and hydraulics 475

8.3.2.2 Performance-based sizing 482

8.3.2.3 Other considerations . 486

Problems . 490

9 Oceans and Estuaries 493

9.1 Introduction . 493

9.2 Ocean-Outfalls . 494

9.2.1 Near-Field Mixing . 497

9.2.1.1 Single plumes . 497

9.2.1.2 Line plumes . 506

9.2.1.3 Design considerations 513

9.2.2 Far-Field Mixing 517

9.3 Multiport Diffusers for Dense Discharges . 524

9.4 Oil Spills 528

9.4.1 Physical Properties of Oil . 529

9.4.2 Environmental Conditions . 532

9.4.3 Fate and Transport Processes . 536

9.4.3.1 Transport . 536

9.4.3.2 Initial spreading . 538

9.4.3.3 Dispersion 540

9.4.3.4 Evaporation . 545

9.4.3.5 Emulsification 550

9.4.3.6 Dissolution 554

9.4.3.7 Photo-oxidation . 559

9.4.3.8 Biodegradation 559

9.4.3.9 Interaction with suspended particulate material . 560

9.4.3.10 Shoreline stranding . 561

9.4.4 Toxicity . 562

9.5 Chemical Spills . 564

9.5.1 Chemical Properties 564

9.5.1.1 Density 564

9.5.1.2 Solubility . 564

9.5.1.3 Saturation vapor pressure and boiling point 565

9.5.1.4 Flash point 565

9.5.1.5 Behavior classifications . 565

9.5.1.6 Toxicity 566

9.6 Estuaries 566

9.6.1 Classification of Estuaries . 567

9.6.2 Water-Quality Issues 569

9.6.3 Salinity Distribution 569

9.6.4 Dissolved Oxygen{The Estuary Streeter-Phelps Model . 572

9.6.5 Flow and Circulation 575

9.6.5.1 Flushing time 577

9.6.5.2 Net 579

Problems . 580

10 Analysis of Water Quality Measurements 587

10.1 Introduction . 587

10.2 Probability Distributions 587

10.2.1 Properties of Probability Distributions 588

10.2.2 Mathematical Expectation and Moments 588

10.3 Fundamental Probability Distributions 590

10.3.1 Normal Distribution 590

10.3.2 Log-Normal Distribution 593

10.3.3 Uniform Distribution 595

10.4 Derived Probability Distributions . 596

10.4.1 Chi-Square Distribution 596

10.4.2 Student's t Distribution 598

10.4.3 F Distribution . 599

10.5 Estimation of a Population Distribution from Sample Data 600

10.5.1 Sample Probability Distribution . 601

10.5.2 Comparisons of Probability Distributions 603

10.5.2.1 The chi-square test . 603

10.5.2.2 Kolmogorov-Smirnov test 605

10.6 Estimation of Parameters of Population Distribution 606

10.6.1 Method of Moments 606

10.6.2 Maximum Likelihood Method . 608

10.6.3 Method of L-moments . 610

10.7 Probability Distributions of Sample Statistics 611

10.7.1 Mean 612

10.7.2 Variance . 612

10.7.3 Coefficient of Skewness . 613

10.7.4 Median . 613

10.7.5 Coefficient of Variation 613

10.7.6 Useful Theorems 615

10.8 Confidence Intervals 615

10.8.1 Mean 616

10.8.2 Variance . 616

10.8.3 Variance Ratios . 617

10.9 Hypothesis Testing . 618

10.9.1 Mean 619

10.9.2 Variance . 620

10.9.3 Population Differences . 620

10.9.3.1 t test . 620

10.9.3.2 Analysis of variance . 621

10.9.3.3 Kruskal-Wallis test 625

10.9.4 Normality 627

10.9.4.1 Shapiro-Wilk test 627

10.9.4.2 Shapiro-Francia test . 629

10.9.4.3 Data transformations to achieve normality 630

10.9.5 Trends 630

10.9.5.1 Mann-Kendall test 631

10.9.5.2 Sen's slope estimator 632

10.10Relationships between Variables 634

10.10.1 Correlation . 634

10.10.2 Regression Analysis 636

10.10.2.1 Confidence limits of predictions 639

10.10.2.2 Coefficient of determination . 639

10.11Functions of Random Variables 640

10.11.1 Addition and Subtraction . 641

10.11.2 Multiplication 642

10.11.3 Division . 643

10.11.4 Other Functions 644

10.12Kriging . 646

10.12.1 The Stationary Case 646

10.12.2 The Intrinsic Case . 651

Problems 657

11 Modeling 667

11.1 Introduction . 667

11.2 Code Selection . 668

11.3 Calibration . 668

11.3.1 Sensitivity Analysis 670

11.3.2 Performance Analysis . 672

11.3.2.1 Error statistics 672

11.3.2.2 Modified error statistics . 675

11.3.2.3 Coefficient of determination . 676

11.3.2.4 Nash-Sutcliffe efficiency . 677

11.3.2.5 Index of agreement . 679

11.3.2.6 Hydrologic measures . 679

11.3.3 Parameter Estimation . 680

11.3.3.1 Multi-objective optimization 681

11.3.3.2 Bayesian approaches . 681

11.3.3.3 Generalized likelihood uncertainty estimation (GLUE) 683

11.4 Validation 684

11.5 Simulation 685

11.6 Uncertainty Analysis 685

11.6.1 Monte Carlo Analysis . 685

11.6.2 Latin Hypercube Sampling 686

11.6.3 Bayesian Monte Carlo Analysis 686

11.6.4 Analytical Probability Models . 687

11.6.5 First-Order Uncertainty Analysis . 688

A Units and Conversion Factors 691

A.1 Units . 691

A.1.1 Derived Units 692

A.1.2 Abbreviations 692

A.1.3 Prefixes693

A.2 Conversion Factors . 693

B Fluid Properties 695

B.1 Water 695

B.2 Organic Compounds in Found in Water . 696

B.3 Air at Standard Atmospheric Pressure 698

C Statistical Tables 699

C.1 Areas Under Standard Normal Curve . 699

C.2 Critical Values of the t Distribution . 702

C.3 Critical Values of the Chi-Square Distribution 704

C.4 Critical Values of the F Distribution (a = 0.05) . 705

C.5 Critical Values for the Kolmogorov-Smirnov Test Statistic . 707

D Special Functions 709

D.1 Error Function . 709

D.2 Bessel Functions 710

D.2.1 Definition 710

D.2.2 Evaluation of Bessel Functions 710

D.3 Gamma Function 715

D.4 Exponential Integral 716

Bibliography 717

Index 756

Note: Product cover images may vary from those shown
3 of 3
David A. Chin University of Miami, Coral Gables, Florida.
Note: Product cover images may vary from those shown
Adroll
adroll