+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)


Bioavailability, Bioaccessibility and Mobility of Environmental Contaminants. Edition No. 1. Analytical Techniques in the Sciences (AnTs) *

  • ID: 5228133
  • Book
  • March 2007
  • 316 Pages
  • John Wiley and Sons Ltd
1 of 3
This book covers all aspects of bioavailability, as related to environmental contaminants. After a discussion of the definition of bioavailability and its context, focus is placed on the role of risk assessment and bioavailability. Methods of analysis are then discussed including a range of atomic spectroscopic and electrochemical techniques for metal analysis and chromatographic approaches for persistent organic pollutants (POPs). The occurrence, properties and eco-toxicity of POPs and metals in the soil/sediment environment are discussed. Particular emphasis is placed on the uptake of POPs and metals by plants (phytoextraction). Examples of POPs and metals in the environment are reviewed.

Methods to assess the bioavailability of POPs and metals in the environment are discussed. The particular approaches considered are:
  • non-exhaustive extraction techniques - single extraction techniques - sequential extraction techniques - use of cyclodextrin and surfactants - in-vitro gastrointestinal methods including physiological-based extraction test - the use of bioasssays including earthworms.
Finally, selected case studies highlight the importance of determining the bioavailability of POPs and metals.
Note: Product cover images may vary from those shown
2 of 3

Series Preface.

Glossary of Terms.

1.0 Contaminated land and the link to human health.

1.1 Introduction.

1.2 Soil Guideline Values.

1.3 Risk to humans.

1.4 An approach to assess contaminated soils relative to soil guidelines values.

1.4.1 Mean value test.

1.4.2 Maximum value test.

1.5 Summary.

1.6 References.

2.0 Sample preparation and analytical techniques for elemental analysis of environmental contaminants.

2.1 Introduction.

2.2 Sample preparation for elemental analysis.

2.2.1 Solid samples.

2.2.2 Liquid samples.

2.3 Atomic absorption spectroscopy.

2.4 Atomic Emission Spectroscopy.

2.5 Inorganic Mass Spectrometry.

2.5.1 Interferences in ICP-MS.

2.6 X-ray fluorescence spectroscopy.

2.7 Electrochemistry.

2.8 Hyphenated Techniques.

2.9 Comparison of elemental analytical techniques.

2.10 Selected resources on elemental analytical techniques.

2.10.1 Specific books on atomic spectroscopy.

2.10.2 Specific books on electroanalytical techniques.

2.11 Summary.

3.0 Sample preparation and analytical techniques for persistent organic pollutant analysis of environmental contaminants
3.1 Introduction.

3.2 Sample preparation for persistent organic pollutant analysis.

3.2.1 Solid samples.

3.2.2 Liquid samples.

3.3 Gas chromatography.

3.4 High performance liquid chromatography.

3.5 Interfacing chromatography and mass spectrometry.

3.6 Comparison of persistent organic pollutant analytical techniques.

3.7 Selected resources on persistent organic pollutant techniques.

3.7.1 Specific books on chromatography.

3.8 Summary.

4.0 Methods used to assess bioavailability of metals.

4.1 Non-exhaustive extraction techniques for metals.

4.2 Single extraction methods for metals.

4.3 Sequential extraction techniques for metals.

4.4 Earthworms.

4.4.1Earthworms in bioavailability studies.

4.4.2 Chemical – extraction methods to estimate bioavailability of metals by earthworms.

4.5 Plant uptake.

4.6 Certified Reference Materials.

4.7 Summary.

4.8 References.

5.0 Methods used to assess bioavailability of persistent organic pollutants.

5.1 Introduction.

5.2 Non-exhaustive extraction techniques for POPs.

5.2.1 Selective or mild-solvent extraction.

5.2.2 Cyclodextrin extraction.

5.2.3 Supercritical fluid extraction.

5.2.4 Other approaches.

5.3 Earthworm studies.

5.3.1 Chemical – extraction methods to estimate bioavailability of POPs by earthworms..

5.4 Plant uptake.

5.5 Summary.

5.6 References.

6.0 Methods used to assess bioaccessibility.

6.1 Introduction.

6.2 Introduction to human physiology.

6.3 Considerations in the design and development of a simulated in vitro gastrointestinal extraction method..

6.4 Approaches to assess bioaccessibility of metals.

6.5 Approaches to assess bioaccessibility of persistent organic pollutants.

6.6 Validity for measuring bioaccessibility.

6.7 Summary.

6.8 References.

7.0 Selected case studies on bioavailability, bioaccessibility and mobility of environmental contaminants.

7.1 Bioavailability of metals by plants.

7.1.1 Background.

7.1.2 Experimental.

7.1.3 Results and Discussion.

7.1.4 Conclusion.

7.1.5 References.

7.2 Bioaccessibility of metals from plants.

7.2.1 Background.

7.2.2 Experimental.

7.2.3 Results and Discussion.

7.2.4 Conclusion.

7.3 Bioavailability of POPs by plants.

7.3.1 Background.

7.3.2 Experimental.

7.3.3 Results and Discussion.

7.3.4 Conclusion.

7.4 Bioaccessibility of POPs from plants.

7.4.1 Background.

7.4.2 Experimental.

7.4.3 Results and Discussion.

7.4.4 Conclusion.

8.0 Recording of information in the laboratory and other selected resources..

8.1 Safety.

8.2 Recording of information.

8.3 Selected other resources.
Note: Product cover images may vary from those shown
3 of 3
John R. Dean University of Northumbria at Newcastle.
Note: Product cover images may vary from those shown