+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Sixth Generation Wireless by 6G Tech Development (Investment, R&D and Testing) and 6G Market Commercialization (Infrastructure, Deployment, Apps and Services), Use Cases and Industry Verticals 2024 - 2030

  • PDF Icon

    Report

  • 199 Pages
  • February 2024
  • Region: Global
  • Mind Commerce
  • ID: 5304521
1h Free Analyst Time

USA, Australia, Canada, Czech Republic, Finland, France, Japan, South Korea, Sweden and United Kingdom to Cooperate with 6G Wireless Development

1h Free Analyst Time

Speak directly to the analyst to clarify any post sales queries you may have.

In its sixth year of analyzing the emerging six-generation wireless market, we are the leading market research company focused upon emerging 6G technologies, capabilities, solutions, applications and services. This report edition expands upon previous analysis focused primarily upon emerging 6G technologies. This edition evaluates 6G development including technology investment, R&D, prototyping and testing.

The report also assesses 6G market commercialization including opportunities for infrastructure development and equipment deployment as well as a realization of applications and services. The report also analyzes 6G market use cases by industry vertical. The report provides 6G market sizing for 2024 through 2030, with the lower end of the range focused primarily on technology development, and the latter end of the range focused on 6G market commercialization.

Select Report Findings:

  • 6G communication services will achieve initial commercialization in 2030
  • Pre-commercial 6G infrastructure and testbeds market will reach almost $5 billion by 2030
  • The Asia Pacific region will lead 6G core and RF investment, followed by the USA and Europe
  • 6G technologies are best characterized as ultra-secure, ultra-fast, ultra-reliable, and ultra-short-range oriented capabilities
  • Network optimization beyond 5G will rely upon smart surfaces with solutions for 6G networks and devices reaching $16 billion by 2035
  • Post commercialization investment in 6G technologies will be dominated by short-range wireless use cases as well as peer-to-peer networking
  • 6G wireless will drive a new wave of electronics innovation including device power management, miniaturization, networking, and edge computing
  • Communications with 6G will depend on device peering for short-chain connectivity for short-range communications and long-chain connectivity for front-haul and back-haul

6G Wireless Technologies

A battle is underway to influence the standards of 6G amid concerns by Western countries and their allies that authoritarian regimes could gain further control over the internet in their countries. The governments of the U.S., Australia, Canada, the Czech Republic, Finland, France, Japan, South Korea, Sweden and the U.K. released a joint statement saying that by working together, "we can support open, free, global, interoperable, reliable, resilient, and secure connectivity."

Expanding upon the trend started with technologies supporting 5G capabilities, 6G will be integrated with a set of previously disparate technologies. Several key technologies will converge with 6G including AI, big data analytics, and next generation computing. 6G networks will extend the performance of existing 5G capabilities along with expanding the scope to support increasingly new and innovative applications across the realms of communications, sensing, wireless cognition, and imaging.

Whereas 5G leverages mmWave in the microwave frequency range, 6G will take advantage of even smaller wavelengths at the Terahertz (THz) band in the 100 GHz to 3 THz range. While the impact to the Radio Access Network (RAN) for 5G is substantial, it will be even bigger with 6G networks, which is driven largely by a substantial increase in frequency, which will facilitate the need for antennas virtually everywhere.

Just as there have been, and will continue to be, many challenges with 5G, so will there be many new challenges with 6G. One of those challenges will be developing commercial transceivers for THz frequencies. This is largely an area in which electronics component providers must innovate. For example, semiconductor providers will need to deal with extremely small wavelengths and correspondingly small physical size of RF transistors and how they will interwork with element spacing of THz antenna arrays.

6G wireless will also exploit some completely new RAN approaches to increasing bandwidth and reducing latency, such as sub-THz radio frequencies and visible light spectrum, as well as leverage enhancements to existing radio methods, such as advanced MIMO technologies to increase spectral efficiency. This will include some innovative methods such as angular momentum multiplexing, combining multi-RAT and 3D multi-link connectivity, along with ultra-dense radio access point deployment such as hyper-extension of the small cell concept in a HetNet environment.

Terahertz Radio Propagation for 6G Communications

There will be many new technologies and solutions approaches to enable terahertz-level radio. For example, ultra-fast radio chips will be required to achieve frequencies up to 20THz for next generation 6G communications. The metastructures are etched and patterned at sub-wavelength distances onto a semiconductor made of gallium nitride and indium gallium nitride. These allow electrical fields inside devices to be controlled.

This approach to semiconductor design has already enabled up to 100 gigabits per second at terahertz frequencies, which represents a 10X improvement over 5G communications. Effectively utilizing these high frequencies will also require innovation in smart antenna implementation. For example, there is a need for reconfigurable antennas that can tune properties such as frequency and radiation beams in real-time.

Sub-Terahertz Radio 6G Solutions

While 6G wireless promises dramatically higher data speeds than 5G advanced via terahertz frequencies, sub-THz communication is a very important interim solution area. For example, the frequency range from 7.125 GHz to 24.25 GHz is attracting attention as possible additional spectrum for 6G, and is already being unofficially referred to as FR3. The wavelength is attractive as compared to FR2 frequencies; it is less susceptible to attenuation, simplifying coverage, and includes enough unallocated frequencies to support wider channels than FR1 (100 MHz).

6G and Smart Surface Technologies

As discussed in previous versions of this 6G market report, smart surfaces will be key to the long-term success of 6G wireless. Specifically, reconfigurable intelligent surface (RIS) technology will provide better control of the electromagnetic waves in the radio propagation channel, which shall dramatically improve performance thanks to leveraging metamaterial properties not found in natural substances.

RIS is crucial for the 6G market, especially at higher frequency ranges, as propagation losses may reach up to 2,000 times higher than that of 5G commercial frequencies. However, current RIS engineering approaches yield up to a 40% improvement as compared to non-RIS based systems. Use of RIS will be critical for 6G in urban environments, especially for indoor wireless for enterprise and industrial solutions.

6G and Artificial Intelligence

While the 6G network will take advantage of 5G’s existing infrastructure, it differentiates itself by using ultra-high radio frequencies to carry more data at faster speeds, and it will have built-in artificial intelligence with machine learning too. Machine learning and AI-based network automation will be crucial to simplify network management and optimization.

With 6G, users can expect to instantaneously transfer data and do away with buffering, lags and disconnections. In a similar way to how 2G gave us text messaging and 4G introduced an entire mobile app system, 6G will enhance machine-to-machine communication, creating greater interoperability in a “smart,” Internet-of-Things era.

In this manner, 6G will provide super communication and ubiquitous information, and converge computing services, thus being the base for an interconnected and converged physical and digital world. 6G will make it possible for applications to “sense” their surroundings, thereby turning the network into a tool for "sixth sense” capabilities.

Ongoing Study of Technologies Beyond 5G and Sixth Generation Wireless

Starting in 2018, we began to formulate a vision for wireless and networking beyond 5G. Working independently, we published our first 6G market research report titled Sixth Generation Cellular: Looking Beyond 5G to the 6G Technology Market in June 2019. This ground-breaking research represented an initial investigation into the upcoming 6G technology market. This research built upon our extensive analysis in LTE, 5G, and computing (core cloud, edge computing, HPC, and quantum), and other related areas such as artificial intelligence and AI support of other technologies.

6G Flagship, an organization funded in part by the Academy of Finland with an overall budget of 251 million Euros to study 6G from 2018 to 2026, published the white paper titled “Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence” in September 2019. We subsequently became involved with efforts at the University of Oulu to develop a set of new white papers focused on various additional aspects of 6G.

This culminated in the publishing of “White Paper on 6G Networking” in June 2020. Written by an international expert group, and led by the Finnish 6G Flagship program, the paper sheds light on advanced features relevant to networking that are anticipated to shape the evolution beyond 5G, ultimately leading to 6G. Gerry Christensen, was one of the authors of the paper and his name is found among the contributors listed on the 6G Flagship website.

The involvement in 6G Flagship’s efforts has both solidified its initial research findings as well as provided an opportunity to network with wireless and networking experts from industry and academia. This makes us the foremost market research authority in the emerging area of 6G technology, solutions, applications and services.

With the purchase of this report at the Multi-user License or greater level, you will have access to one hour with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This will need to be used within three months of purchase.

This report also includes a complimentary Excel file with data from the report for purchasers at the Site License or greater level.

Table of Contents


1.0 Executive Summary
2.0 Introduction
2.1 Defining 6G Wireless
2.1.1 6G Key Performance Indicators
2.1.2 5G and 6G Comparison
2.2 6G Roadmap: Evolution to 6G Wireless Networks
2.3 Beyond 5G Evolution, 5G Context, and 6G
2.3.1 Much Greater Data Speed
2.3.2 Focus on Edge Computing for Latency Reduction
2.3.3 Dealing with Radio Propagation and Mobility Challenges
2.3.4 Providing Massively Scalable Support for IoT
2.3.5 Increased Emphasis on Private Networks for Business
2.4 6G Network Elements
2.4.1 New Spectrum and Frequencies
2.4.2 Radio Access Network Transformation
2.4.3 Changes to Core Networks
2.4.4 Evolution of the Datacenter
2.5 6G Functionality and Benefits
2.5.1 6G Functionality and Features
2.5.1.1 Leverages Terahertz Communication
2.5.1.2 Emphasis on Energy Conservation
2.5.1.3 Operational, Environmental, and Service Intelligence
2.5.1.4 Improved Security and Privacy
2.5.1.5 Connected Satellite Network and Intelligence
2.5.1.6 Synergy with Information and Energy
2.5.1.7 Three-Dimensional Connectivity
2.5.1.8 Small Cell Network Evolution
2.5.1.9 Hyper-Dense Heterogeneous Networks
2.5.1.10 Ultra-High Capacity Wireless Backhaul
2.5.1.11 Communications and Sensing Integration
2.5.1.12 Next Generation Softwarization and Virtualization
2.6 6G Technology Benefits
2.7 6G Market Drivers and Challenges
2.7.1 6G Market Growth Factors
2.7.1.1 Need for Microsecond Latency
2.7.1.2 Growth of IoT and Industrial, Object-Driven Traffic
2.7.1.3 Wireless Cognition, Single Core Structure, and Public Safety
2.7.1.4 Smart City Applications: Sensing and More
2.7.1.5 Ubiquitous Coverage from Satellite Internet to Ultra-Local Networks
2.7.1.6 Ultra-Macro Coverage
2.7.1.7 Ultra-Micro Coverage
2.7.1.8 Fully Digital and Connected World
2.7.1.9 Fundamental Improvements in User Experience
2.7.1.10 6G Democratizes Intelligence
2.7.1.10.1 Smart Surfaces
2.7.1.10.2 Smart Environments
2.7.1.10.3 Smart Power
2.7.1.11 Meeting UN Sustainable Development Goals
2.7.1.12 Facilitating Private-Public Industry Collaboration
2.7.1.13 Realizing a Hyper-Connected Intelligent World
2.7.2 6G Market Challenges
2.7.2.1 High Deployment Expenditures
2.7.2.2 Unprecedented Impacts on Industry Verticals
2.7.2.3 Business Model Disruption for Communication Service Providers
2.7.2.3.1 Substantial Disintermediation
2.7.2.3.2 Voice and Data Value Perception Approaches Zero
2.7.2.3.3 Extreme Focus on Local Communication and Networking
2.7.2.3.4 Device-to-Device Signaling, Relay, and Mesh Networks
2.7.2.3.5 Supporting Micro-Operators Networks
2.7.2.4 Business Model Disruption for Computing and Data Centers
2.7.2.4.1 Significant Data will be Creation
2.7.2.4.2 Edge Compute Native Networks
2.7.2.4.3 Considerable Catalyst for HPC and Quantum Computing
2.7.2.4.4 New Security and Privacy Issues
2.8 6G Business Models
2.8.1 Decentralized Business Model
2.8.2 New Business Model for Network Operators
2.8.3 Private Network Transformation
2.8.4 Micro-Operators and Distributed Services Model
2.9 6G Value Chain
2.9.1 User Equipment Manufacturers
2.9.2 Infrastructure Manufacturers
2.9.3 Connectivity Providers
2.9.4 IoT Solution Providers
2.9.5 Analytics Solution Providers
2.9.6 Enterprise, Government, and Industrial Users
2.9.7 Software Solution Providers
2.10 Anticipated 6G Impacts on Industry and Society
2.10.1 6G Impact on Information and Communications Technology
2.10.2 6G Economic and Cultural Impacts
2.11 6G Research Initiatives and Industry Development
2.11.1 China
2.11.2 United States
2.11.3 Canada
2.11.4 Japan
2.11.5 South Korea
2.11.6 Finland (6G Flagship)
2.11.7 European Commission
2.11.8 International Telecommunication Union

3.0 6G Technology Considerations
3.1 6G Spectrum Evolution
3.1.1 95 GHz to 3 THz Frequency Bands
3.1.2 THz Spectrum Benefits
3.1.3 Radio Frequency and Data Rates Targeting One Terabit
3.1.4 Unlicensed Spectrum and Private Networks
3.1.4.1 NR U and 6G U
3.1.4.2 6G Private Networks
3.1.5 Citizens Broadband Radio Service and Spectrum Sharing
3.1.6 Impact of Softwarization and AI
3.2 6G Network Management and Orchestration
3.3 6G Communication Infrastructure
3.3.1 Physical, Digital, and Biological System Convergence
3.3.2 Short Range Communication Impact
3.3.3 AI and Machine Learning
3.3.4 Inter-Protocol Interference
3.3.5 Molecular Communications
3.3.6 Internet of Nano-Things
3.3.7 Internet of Sense
3.4 6G Communication Technologies
3.4.1 Substantial Improvements in Enhanced Mobile Broadband
3.4.2 Secure Ultra-Reliable Low-Latency Communications
3.4.3 3D Integrated Communications
3.4.4 Unconventional Data Communications
3.5 6G Enabling Technologies
3.5.1 Terahertz Frequency
3.5.2 Optical Wireless Technology
3.5.3 FSO Backhaul Network
3.5.4 Blockchain-Based Spectrum Sharing
3.5.5 Three-Dimensional Networking
3.5.6 Flexible Communications
3.5.7 Integrated Energy Management, Sensing and Communications
3.5.8 Dynamic Network Slicing
3.5.9 Holographic Beamforming
3.5.10 Supermassive Intelligent Surface Assisted MIMO and Large-Scale Antenna Arrays
3.5.11 AI Native 6G Networks
3.5.12 Intelligence at the Edge of Everything
3.5.13 Modern Random-Access Protocols for IoT
3.5.14 Radio Access Technology in Industry 4.0
3.5.15 Semantic Intelligence
3.5.16 Encryption Technologies
3.5.17 Visible Light Communication and Sub-THz Communication
3.5.18 Orbital Angular Momentum Multiplexing
3.5.19 CMOS Technology and Intelligent Chips
3.5.20 Fixed Wireless Access
3.5.21 Quasi-Optical Antennas
3.5.22 Artificial Intelligence and IoT Fusion
3.5.23 Digital Signal Processing
3.6 6G R&D Investments
3.7 6G Testbeds for Technology Acceptance and Market Development

4.0 6G Infrastructure Market
4.1 Core Infrastructure
4.2 Radio Equipment
4.3 Computing Equipment
4.4 Transport Networks

5.0 6G Semiconductor Market
5.1 6G Chipsets
5.2 Terahertz Receivers
5.2.1 Nanoscale Atomristor Switch

6.0 6G Device Market
6.1 Smartphones and other Handheld Devices
6.2 Wearables and Implantables
6.3 Modems, Gateways, Access Points
6.4 Vehicle Communications
6.5 Buildings and Facility Communications

7.0 6G Materials Market
8.0 6G Solution Areas
8.1 6G Communications
8.2 6G Sensing
8.3 6G Imaging
8.4 6G Precise Location

9.0 6G Use Cases and Anticipated Applications
9.1 Volumetric Media Streaming
9.2 Connected Manufacturing and Automation
9.3 Multi-Sensory Extended Reality
9.4 Next Generation Healthcare
9.5 Communications for Brain-Computer Integration
9.6 Connected Robotics and Autonomous Systems
9.7 Five Sense Information Transfer
9.8 Internet of Everything

10.0 6G Synergies with Next Generation Computing
10.1 Multi-Access Edge Computing
10.2 High Performance Computing
10.3 Quantum Computing
10.3.1 Quantum Technologies: Communication, Sensing, Simulation, and Imaging
10.3.2 Next Generation Computing
10.3.3 Digital Twining Technology, Smart Machines, and Physical-Cyber Convergence

11.0 6G Technology Company Analysis
11.1 AT&T
11.2 Autotalks
11.3 Broadcom Corporation
11.4 China Telecom
11.5 China Unicom
11.6 Cisco Systems
11.7 Corning Incorporated
11.8 DARPA
11.9 DeepSig
11.10 Ericsson
11.11 Meta (Facebook)
11.12 Federated Wireless
11.13 Fujitsu
11.14 Google
11.15 Huawei
11.16 InterDigital
11.17 Karlsruhe Institute of Technology
11.18 Keysight Technologies
11.19 LG Corporation
11.20 MediaTek
11.21 Motorola Solutions
11.22 Nanyang Technological University
11.23 National Science Foundation
11.24 Nokia (Bell Labs)
11.25 NEC Corporation
11.26 NTT DoCoMo
11.27 Nvidia
11.28 NYU Wireless
11.29 Orange
11.30 NGMN Alliance
11.31 Qualcomm
11.32 Samsung Electronics
11.33 SK Telecom
11.34 T-Mobile
11.35 TU Braunschweig
11.36 ComSenTer (University of California)
11.37 University of Oulu (6G Flagship)
11.38 Virginia Diodes
11.39 National Instrument Corp.
11.40 Virginia Tech
11.41 Verizon Wireless
11.42 ZTE
11.43 Reliance Jio Infocomm Limited

12.0 6G Market Analysis and Forecasts 2024 - 2030
12.1 Network, Device, and Computing Cost Considerations
12.2 6G Infrastructure Market 2024 - 2030
12.2.1 Global 6G Infrastructure Market
12.2.2 Global 6G Infrastructure Market by Type
12.2.2.1 Global 6G Infrastructure Market by End User Device
12.2.2.2 Global 6G Infrastructure Market by Equipment
12.2.2.3 Global 6G Infrastructure Market by Semiconductors
12.2.2.4 Global 6G Infrastructure Market by 6G Materials
12.2.3 Regional 6G Infrastructure Market
12.2.3.1 6G Infrastructure Market by Region
12.2.3.1.1 APAC 6G Infrastructure Market: Device, Equipment, and Materials
12.2.3.1.2 North America 6G Infrastructure Market: Device, Equipment, and Materials
12.2.3.1.3 Europe 6G Infrastructure Market: Device, Equipment, and Materials
12.2.3.1.4 MEA 6G Infrastructure Market: Device, Equipment, and Materials
12.2.3.1.5 Latin America 6G Infrastructure Market: Device, Equipment, and Materials
12.3 6G Infrastructure Unit Deployment 2024 - 2030
12.3.1 Global 6G Infrastructure Unit Deployment
12.3.2 Global 6G Infrastructure Unit Deployment by Type
12.3.2.1 Global 6G End User Device Unit Deployment
12.3.2.2 Global 6G Infrastructure Unit Deployment by Equipment
12.3.2.3 Global 6G Semiconductor Unit Deployment
12.3.3 6G Infrastructure Unit Deployment by Region
12.3.3.1 APAC 6G Infrastructure Unit Deployment: Device, Equipment, and Country
12.3.3.2 North America 6G Infrastructure Unit Deployment: Device, Equipment, and Country
12.3.3.3 Europe 6G Infrastructure Unit Deployment: Device, Equipment, and Country
12.3.3.4 MEA 6G Infrastructure Unit Deployment: Device, Equipment, and Country
12.3.3.5 Latin America 6G Infrastructure Unit Deployment: Device, Equipment, and Country
12.4 6G Testbeds Market 2024 - 2030
12.4.1 Global 6G Testbed PaaS Market
12.4.2 Global 6G Testbed PaaS Market by Region
12.4.3 Global 6G Testbed PaaS Market by Country
12.5 6G Investment 2024 - 2030
12.5.1 Global 6G R&D Investment
12.5.1.1 Global 6G R&D Investment by Funding Type
12.5.2 Global 6G Core Infrastructure Investment
12.5.3 Global 6G Transport Network Investment

13.0 Conclusions and Recommendations
14.0 Appendix
14.1 5G Technologies in Support of 6G Evolution
14.1.1 5G Communication Technology
14.1.1.1 Enhanced Mobile Broadband
14.1.1.2 Ultra-reliable Low-latency Communications
14.1.1.3 Massive Machine-type Communications
14.1.2 Service Based Architecture and Orchestration
14.1.3 Fixed Wireless Access
14.1.4 Edge Computing with Communication
14.1.5 Smart Antennas with MIMO and Beamforming
14.1.6 Smart Surfaces Technology
14.2 5G Applications to Expedite 6G Evolution
14.2.1 Retail and Consumer Electronics Applications
14.2.2 Healthcare Applications
14.2.3 Industrial Automation Applications
14.2.4 Intelligent Building Automation Applications
14.2.5 Automotive and Transportation Applications
14.2.6 Home Automation Applications
14.2.7 Financial Institution Applications
14.2.8 Energy and Utilities Applications
14.2.9 Public Safety Applications
14.2.10 Military Applications
14.2.11 Oil and Gas Applications
14.2.12 Mining Applications
14.2.13 Agriculture Applications
14.3 5G Service Market 2024 - 2030
14.3.1 5G Service Market by Communication Technology
14.3.1.1 5G eMBB Market by Application
14.3.1.2 5G mMTC Market by Application
14.3.1.3 5G URLLC Market by Application
14.3.1.4 5G FWA Market by Application
14.3.2 5G Service Market by Communication Device
14.3.3 5G Market by Service Provider
14.3.3.1 5G Carrier/MNO Service Market
14.3.3.1.1 5G Consumer Application Market
14.3.3.1.2 5G Enterprise Application Market
14.3.3.1.3 5G Government Application Market
14.3.3.2 5G OTT Service Market
14.4 5G New Radio Application Market 2024 - 2030

List of Figures
Figure 1: 6G Key Performance Indicators
Figure 2: Comparison: 5G vs. 6G Wireless Communication
Figure 3: Evolution of Wireless Communication: 1G to 6G
Figure 4: Edge Computing and Latency
Figure 5: 5G Accelerates Private Wireless Networks
Figure 6: Local and Personal Networks
Figure 7: Tomorrow’s World of Everything is an Access Point
Figure 8: 6G AI “Nanocore” Infrastructure
Figure 9: THz Electromagnetic Spectrum Considerations
Figure 10: 6G Key Features
Figure 11: Smart Surfaces
Figure 12: Smart Environment
Figure 13: 6G Connected World
Figure 14: Private Network Diagram
Figure 15: CBRS Spectrum Sharing
Figure 16: 6G Network Orchestration
Figure 17: 6G Communication Architecture
Figure 18: 6G Communication Technology
Figure 19: Semantic Intelligence in Automated Factory
Figure 20: Sub-THz Hardware IC Technology
Figure 21: Visible Light Communication: Mbps to Tbps
Figure 23: 6G Sub-Terahertz Testbed
Figure 22: Intelligent O-RAN Architecture
Figure 24: Global 6G Infrastructure Market 2024 - 2030
Figure 25: Global 6G Infrastructure Unit Deployment 2024 - 2030
Figure 26: Global 6G Testbed PaaS Market 2024 - 2030
Figure 27: Global 6G R&D Investment 2024 - 2030
Figure 28: Global 6G Core Infrastructure Investment 2024 - 2030
Figure 29: Global 6G Transport Network Investment 2024 - 2030
Figure 30: 5G Communication Technologies

List of Tables
Table 1: 6G Network, Device and Computing Price Estimates
Table 2: Global 6G Infrastructure Market by Type 2024 - 2030
Table 3: Global 6G Market by End User Device 2024 - 2030
Table 4: Global 6G Infrastructure Market by Equipment 2024 - 2030
Table 5: Global 6G Market by Semiconductors 2024 - 2030
Table 6: Global 6G Infrastructure Market by 6G Materials 2024 - 2030
Table 7: Global 6G Infrastructure Market by Region 2024 - 2030
Table 8: APAC 6G Infrastructure Market by Type 2024 - 2030
Table 9: APAC 6G Market by End User Device 2024 - 2030
Table 10: APAC 6G Infrastructure Market by Equipment 2024 - 2030
Table 11: APAC 6G Market by Semiconductors 2024 - 2030
Table 12: APAC 6G Infrastructure Market by 6G Materials 2024 - 2030
Table 13: APAC 6G Infrastructure Market by Country 2024 - 2030
Table 14: North America 6G Infrastructure Market by Type 2024 - 2030
Table 15: North America 6G Market by End User Device 2024 - 2030
Table 16: North America 6G Infrastructure Market by Equipment 2024 - 2030
Table 17: North America 6G Market by Semiconductors 2024 - 2030
Table 18: North America 6G Infrastructure Market by 6G Materials 2024 - 2030
Table 19: North America 6G Infrastructure Market by Country 2024 - 2030
Table 20: Europe 6G Infrastructure Market by Type 2024 - 2030
Table 21: Europe 6G Market by End User Device 2024 - 2030
Table 22: Europe 6G Infrastructure Market by Equipment 2024 - 2030
Table 23: Europe 6G Market by Semiconductors 2024 - 2030
Table 24: Europe 6G Infrastructure Market by 6G Materials 2024 - 2030
Table 25: Europe 6G Infrastructure Market by Country 2024 - 2030
Table 26: MEA 6G Infrastructure Market by Type 2024 - 2030
Table 27: MEA 6G Market by End User Device 2024 - 2030
Table 28: MEA 6G Infrastructure Market by Equipment 2024 - 2030
Table 29: MEA 6G Market by Semiconductors 2024 - 2030
Table 30: MEA 6G Infrastructure Market by 6G Materials 2024 - 2030
Table 31: MEA 6G Infrastructure Market by Country 2024 - 2030
Table 32: Latin America 6G Infrastructure Market by Type 2024 - 2030
Table 33: Latin America 6G Market by End User Device 2024 - 2030
Table 34: Latin America 6G Infrastructure Market by Equipment 2024 - 2030
Table 35: Latin America 6G Market by Semiconductors 2024 - 2030
Table 36: Latin America 6G Infrastructure Market by 6G Materials 2024 - 2030
Table 37: Latin America 6G Infrastructure Market by Country 2024 - 2030
Table 38: Global 6G Infrastructure Unit Deployment by Type 2024 - 2030
Table 39: Global 6G End User Device Unit Deployment 2024 - 2030
Table 40: Global 6G Infrastructure Unit Deployment by Equipment 2024 - 2030
Table 41: Global 6G Semiconductor Unit Deployment 2024 - 2030
Table 42: Global 6G Infrastructure Unit Deployment by Region 2024 - 2030
Table 43: APAC 6G Infrastructure Unit Deployment by Type 2024 - 2030
Table 44: APAC 6G End User Device Unit Deployment 2024 - 2030
Table 45: APAC 6G Infrastructure Unit Deployment by Equipment 2024 - 2030
Table 46: APAC 6G Semiconductor Unit Deployment 2024 - 2030
Table 47: APAC 6G Infrastructure Unit Deployment by Country 2024 - 2030
Table 48: North America 6G Infrastructure Unit Deployment by Type 2024 - 2030
Table 49: North America 6G End User Device Unit Deployment 2024 - 2030
Table 50: North America 6G Infrastructure Unit Deployment by Equipment 2024 - 2030
Table 51: North America 6G Semiconductor Unit Deployment 2024 - 2030
Table 52: North America 6G Infrastructure Unit Deployment by Country 2024 - 2030
Table 53: Europe 6G Infrastructure Unit Deployment by Type 2024 - 2030
Table 54: Europe 6G End User Device Unit Deployment 2024 - 2030
Table 55: Europe 6G Infrastructure Unit Deployment by Equipment 2024 - 2030
Table 56: Europe 6G Semiconductor Unit Deployment 2024 - 2030
Table 57: Europe 6G Infrastructure Unit Deployment by Country 2024 - 2030
Table 58: MEA 6G Infrastructure Unit Deployment by Type 2024 - 2030
Table 59: MEA 6G End User Device Unit Deployment 2024 - 2030
Table 60: MEA 6G Infrastructure Unit Deployment by Equipment 2024 - 2030
Table 61: MEA 6G Semiconductor Unit Deployment 2024 - 2030
Table 62: MEA 6G Infrastructure Unit Deployment by Country 2024 - 2030
Table 63: Latin America 6G Infrastructure Unit Deployment by Type 2024 - 2030
Table 64: Latin America 6G End User Device Unit Deployment 2024 - 2030
Table 65: Latin America 6G Infrastructure Unit Deployment by Equipment 2024 - 2030
Table 66: Latin America 6G Semiconductor Unit Deployment 2024 - 2030
Table 67: Latin America 6G Infrastructure Unit Deployment by Country 2024 - 2030
Table 68: Global 6G Testbed PaaS Market by Region 2024 - 2030
Table 69: Global 6G Testbed PaaS Market by Country 2024 - 2030
Table 70: Global 6G R&D Investment by Funding Type 2024 - 2030
Table 71: Global 5G Service Market by Communication Technology 2024 - 2030
Table 72: Global 5G Market by eMBB Application 2024 - 2030
Table 73: Global 5G Market by eMBB Application 2024 - 2030
Table 74: Global 5G Market by URLLC Application 2024 - 2030
Table 75: Global 5G Market by FWA Application 2024 - 2030
Table 76: Global 5G Service Market by Communication Device 2024 - 2030
Table 77: Global 5G Market by Service Provider 2024 - 2030
Table 78: Global 5G Carrier/MNO Service Market by Application 2024 - 2030
Table 79: Global 5G Carrier/MNO Service Market by Consumer Application 2024 - 2030
Table 80: Global 5G Carrier/MNO Service Market by Business Application 2024 - 2030
Table 81: Global 5G Carrier/MNO Service Market by Government Application 2024 - 2030
Table 82: Global 5G OTT Service Market by Application 2024 - 2030
Table 83: Global 5G OTT Service Market by Application 2024 - 2030

Companies Mentioned

  • AT&T
  • Autotalks
  • Broadcom Corporation
  • China Telecom
  • China Unicom
  • Cisco Systems
  • ComSenTer (University of California)
  • Corning Incorporated
  • DARPA
  • DeepSig
  • Ericsson
  • European Commission
  • Federated Wireless
  • Fujitsu
  • Google
  • Huawei
  • InterDigital
  • International Telecommunication Union
  • Karlsruhe Institute of Technology
  • Keysight Technologies
  • LG Corporation
  • MediaTek
  • Motorola Solutions
  • Nanyang Technological University
  • National Instrument Corp.
  • National Science Foundation
  • NEC Corporation
  • NGMN Alliance
  • Nokia (Bell Labs)
  • NTT DoCoMo
  • Nvidia
  • NYU Wireless
  • Orange
  • Qualcomm
  • Reliance Jio Infocomm Limited
  • Samsung Electronics
  • SK Telecom
  • T-Mobile
  • TU Braunschweig
  • University of Oulu (6G Flagship)
  • Verizon Wireless
  • Virginia Diodes
  • Virginia Tech
  • ZTE

Methodology

Loading
LOADING...