+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Global Microencapsulation Market: Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028

  • PDF Icon

    Report

  • 141 Pages
  • November 2023
  • Region: Global
  • IMARC Group
  • ID: 5911836

Quick Summary:

In the ever-evolving landscape of modern industry, the innovative process of microencapsulation stands as a pivotal breakthrough offering unparalleled advantages across a spectrum of sectors. At the heart of this progress is the escalated demand for functional and fortified consumables, as well as an insatiable appetite for advanced drug delivery mechanisms and protective solutions in personal care formulations.

The microencapsulation market's momentum is further bolstered by its integral role in optimizing the functionality of phase change materials (PCMs) for thermal management and in reinforcing the agricultural sector through enhanced effectiveness of agrochemicals. This comprehensive market research report delves into these drivers, elucidating the transformative impact of microencapsulation on product development, consumer satisfaction, and industrial efficiency. Whether exploring its application in consumables that bolster health and wellness or its vital function within high-tech materials, the report offers indispensable insights for businesses positioning themselves at the forefront of innovation and market growth.

The global microencapsulation market size reached US$ 9.6 Billion in 2022. Looking forward, the market is expected to reach US$ 16.0 Billion by 2028, exhibiting a growth rate (CAGR) of 8.89% during 2022-2028.The increasing demand for fortified food products with enhanced shelf life and controlled release of nutrients, augmenting product demand in personal care and cosmetics industry, and the rising need for phase change materials (PCMs) are some of the factors that are propelling the market.

Microencapsulation is a process whereby tiny particles or droplets are surrounded by a coating or encapsulated within a protective shell to give small capsules with many useful properties. This advanced technology enables the control of release patterns, protection of sensitive compounds, and masking of undesirable tastes or odors, offering substantial advantages in product formulation and design. It has a wide range of applications in various sectors, including pharmaceuticals, food and beverages, personal care products, and agriculture, among others. The technology allows controlled release of active ingredients, enhances stability, and improves handling of the encapsulated product. It can also extend product shelf life, provide protection from environmental factors, and offer a mechanism for precise delivery of small quantities of active substances.

The global market is majorly driven by the increasing demand for fortified food products with enhanced shelf life and controlled release of nutrients. Also, the burgeoning wellness and health trends coupled with rising consumer awareness about the benefits of nutrient-rich food are propelling the market. Additionally, the growing need for effective drug delivery systems in the pharmaceutical industry is also fostering the growth of the market. Furthermore, the growing use of this technology for agrochemical delivery for protecting active ingredients until their controlled release can optimize the desired effects is contributing to the market. Apart from this, continual advancements in technology and the development of innovative techniques are creating lucrative opportunities in the market. Besides this, the emergence of sustainable, environment-friendly encapsulation processes due to the growing global emphasis on sustainability and reduction of environmental impact, is creating a positive outlook for the market.

Microencapsulation Market Trends/Drivers

Rising Demand in Personal Care and Cosmetics Industry

The personal care and cosmetics industry is witnessing an escalating demand for microencapsulation, driven by the need for increased product effectiveness and improved consumer experiences. Microencapsulation allows for the controlled release of fragrances, moisturizing agents, vitamins, and other active ingredients, enhancing the functionality of various products ranging from skincare and hair care to color cosmetics. For instance, encapsulated vitamins in a skincare product can be shielded from degradation, ensuring their potency until the time of application. This technology also enables innovative product designs, such as color-changing cosmetics or time-release fragrance products, further appealing to consumers seeking novelty and high-performance products. Thus, the expanding personal care and cosmetics industry and its evolving needs provide a significant growth opportunity in the market.

Escalating Demand for Phase Change Materials (PCMs)

Phase Change Materials (PCMs), potent substances capable of storing and releasing significant quantities of energy, have received significant interest in a wide variety of industries, such as textiles, construction, and electronics, due to their unparalleled thermal regulation properties. These PCMs, when microencapsulated, offer numerous benefits such as amplified stability, accurate temperature control, and simplified handling, making them an ideal choice for integration into a plethora of materials and products. For instance, in the dynamic textile industry, microencapsulated PCMs are utilized to create intelligent fabrics capable of regulating body temperature, thereby substantially enhancing wearer comfort and performance. Similarly, within the building sector, the integration of these PCMs into construction materials can drastically improve energy efficiency, leading to a decrease in environmental impact and cost savings over time. The rise in consciousness about sustainable materials and the increasing rate of adoption in these industries are playing a pivotal role in driving the escalating demand for this technology.

Increasing Adoption in the Agrochemical Industry

Microencapsulation technology is seeing a considerable rise in adoption within the agrochemical industry due to its potential to exponentially improve the efficiency and safety of pesticide application. Pesticides, when microencapsulated, can provide a multitude of benefits, including a controlled release mechanism, reduced environmental impact, and minimized exposure risks to non-target organisms, ensuring a safer and more effective approach to pest control. Furthermore, this innovative technology plays a crucial role in resistance management, enabling the sequential release of diverse active ingredients. It guarantees that the pests are exposed to different modes of action over a certain period, thereby mitigating the chances of resistance development. As environmental and safety regulations tighten across the globe, and as the pressing need for robust pest management strategies grows in line with the escalating global food demand, it is creating a positive market outlook.

Microencapsulation Industry Segmentation

This research provides an analysis of the key trends in each segment of the global microencapsulation market report, along with forecasts at the global, regional and country levels from 2023-2028. The report has categorized the market based on coating material, core form, technology and application.

Breakup by Coating Material:

  • Carbohydrates
  • Gums and Resins
  • Lipids
  • Polymers
  • Proteins
  • The report has provided a detailed breakup and analysis of the market based on the coating material. This includes carbohydrates, gums and resins, lipids, polymers, and proteins.
Microencapsulation of carbohydrates, gums, and resins allows for their efficient use in various applications, by controlling their release and improving stability. It aids in preserving the functionality of these materials, promoting their use in industries like food and beverages, and pharmaceuticals. The technology also helps in improving the shelf-life of these substances, further driving their demand.

On the other hand, the need to improve the stability and bioavailability of lipids drives their encapsulation. Encapsulation of lipids can also aid in controlling their release, enhancing their efficacy in various applications. The technology helps in preventing oxidation and other undesirable changes in lipids, contributing to their longer shelf-life.

Additionally, the need to improve the stability and bioavailability of lipids drives their encapsulation. Encapsulation of lipids can also aid in controlling their release, enhancing their efficacy in various applications. The technology helps in preventing oxidation and other undesirable changes in lipids, contributing to their longer shelf-life.

Furthermore, the need to improve the stability and bioavailability of lipids drives their encapsulation. Encapsulation of lipids can also aid in controlling their release, enhancing their efficacy in various applications. The technology helps in preventing oxidation and other undesirable changes in lipids, contributing to their longer shelf-life.

Breakup by Core Form:

  • Solid
  • Liquid
  • Gas
  • Liquid represents the largest market segment
The report has provided a detailed breakup and analysis of the market based on the core form. This includes solid, liquid, and gas. According to the report, liquid represented the largest segment.

The encapsulation of liquid core materials is driven by the augmenting need to stabilize volatile or reactive compounds. It is also useful in masking undesirable tastes and odors in liquid substances. Liquid encapsulation allows for controlled release, improving product efficacy and consumer experience.

On the other hand, the need to enhance the stability and efficiency of solid and gas core materials is driving their encapsulation across the globe. Microencapsulation of solid and gas materials allows for controlled release, ensuring effective utilization. It can also aid in the protection of these materials from adverse conditions, increasing their shelf life and effectiveness.

Breakup by Technology:

  • Spray Technology
  • Dripping Technology
  • Emulsion Technology
  • Coating Technology
  • Spray accounts for the majority of the market share
The report has provided a detailed breakup and analysis of the market based on the technology. This includes spray, dripping, emulsion, coating, and other technologies. According to the report, spray represented the largest segment.

Spray technology segment in the market is driven by its suitability for large-scale industrial processes due to its high throughput. The flexibility of spray technology to produce a wide range of particle sizes is another factor driving its adoption. It also offers benefits like controlled drying and encapsulation efficiency, making it a preferred choice in various industries.

On the other hand, the precision and control provided by dripping technology for size and shape of microcapsules are key drivers for its use. Its ability to encapsulate a wide variety of core materials effectively promotes its adoption in different industries. The technology is particularly favored for applications where a high degree of control over the encapsulation process is needed.

Additionally, the precision and control provided by dripping technology for size and shape of microcapsules are key drivers for its use. Its ability to encapsulate a wide variety of core materials effectively promotes its adoption in different industries. The technology is particularly favored for applications where a high degree of control over the encapsulation process is needed.

Furthermore, coating technology offers benefits such as improved product stability and shelf-life, driving its demand in the market. It enables effective masking of undesirable tastes and odors, particularly useful in the food and pharmaceutical sectors. The technology is also useful in controlling the release of active ingredients, enhancing their overall performance.

Breakup by Application:

  • Pharmaceutical and Healthcare
  • Household and Personal Care
  • Food and Beverages
  • Agrochemicals
  • Construction
  • Textiles
  • Pharmaceutical and healthcare accounts for the majority of the market share
The report has provided a detailed breakup and analysis of the market based on the application. This includes pharmaceutical and healthcare, household and personal care, food and beverages, agrochemicals, construction, textiles, and others. According to the report, pharmaceutical and healthcare represented the largest segment.

The rising prevalence of chronic diseases requiring controlled drug delivery is a key factor driving the market in the pharmaceutical and healthcare sector. The growing use of this technology for the encapsulation of probiotics to enhance their survival during processing and consumption is also propelling the demand. Additionally, the development of new drug delivery systems to improve patient compliance and therapeutic efficiency is further fueling the market growth.

On the other hand, in the food and beverage industry, this encapsulation technology is increasingly used to enhance the stability and prolong the shelf life of various nutrients and bioactive compounds. In household and personal care, it aids in controlled release of fragrances and active ingredients, improving product efficacy. For agrochemicals, construction, and textiles, the technology provides enhanced protection and controlled release of encapsulated materials, leading to improved efficiency and effectiveness.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Latin America
  • Brazil
  • Mexico
  • Middle East and Africa
  • North America exhibits a clear dominance, accounting for the largest microencapsulation market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

The growth of the microencapsulation market in North America is driven by the presence of a significant number of key market players and extensive R&D activities in the region. The robust pharmaceutical and healthcare sectors, along with the rapidly growing food and beverage industry, contribute to the demand for microencapsulation.

The adoption of advanced technologies and increased focus on personalized medicines also fuel the market growth in this region. The region has a high demand for sustainable and green products, which encourages the use of microencapsulation technology to enhance product performance and extend product life. Furthermore, the rise in health-conscious consumers who demand nutrient-rich food products also plays a role in driving the use of microencapsulation technology in the food and beverage industry.

Competitive Landscape

The leading companies are investing significantly in research and development activities to develop innovative microencapsulation techniques and applications. They are focusing on enhancing the efficiency, performance, and versatility of microencapsulation technologies across different industries. Many key players are forming strategic partnerships and collaborations with other companies, research institutions, and academic organizations. These partnerships enable knowledge sharing, access to complementary technologies, and combined expertise, leading to accelerated product development and market expansion. To meet the growing demand for microencapsulation products and services, market leaders are expanding their production capacities. This includes investing in new manufacturing facilities, scaling up existing production lines, and optimizing production processes to ensure efficient and cost-effective manufacturing. Furthermore, they are investing in marketing campaigns, branding initiatives, and educational programs to raise awareness about microencapsulation technology and its benefits.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:
  • AVEKA Group
  • Balchem Inc.
  • BASF SE
  • Bayer AG
  • Capsulae
  • Cargill Incorporated
  • DuPont de Nemours Inc.
  • Encapsys LLC
  • Koehler Innovative Solutions
  • Koninklijke DSM N.V.
  • Lycored
  • Reed Pacific
  • Syngenta Group (China National Chemical Corporation)
  • TasteTech

Recent Developments

In April 2020, AVEKA Group started construction on a large-scale expansion to its AVEKA Nutra Processing (ANP) facility in Waukon, Iowa. Originally started in 2011, the Waukon plant specializes in processing food, beverage, and nutraceutical products for AVEKA’s wide range of clients.

In January 2023, Balchem announced that the Company has been named one of America’s Most Responsible Companies by Newsweek and Statista Inc., the world-leading statistics portal and industry ranking provider. Balchem has earned a ranking amongst this prestigious list of companies for the third consecutive year.

In July 2023, BASF and Zhejiang Guanghua Technology Co.,Ltd. (KHUA) have signed a Letter of Intent (LoI) for the supply of Neopentyl Glycol (NPG) from BASF’s Zhanjiang Verbund site to KHUA. This partnership will help to meet the growing demand for low-emission powder coatings in China and the wider Asia Pacific region.

Key Questions Answered in This Report:

  • How has the global microencapsulation market performed so far, and how will it perform in the coming years?
  • What are the drivers, restraints, and opportunities in the global microencapsulation market?
  • What is the impact of each driver, restraint, and opportunity on the global microencapsulation market?
  • What are the key regional markets?
  • Which countries represent the most attractive microencapsulation market?
  • What is the breakup of the market based on the coating material?
  • Which is the most attractive coating material in the microencapsulation market?
  • What is the breakup of the market based on the core form?
  • Which is the most attractive core form in the microencapsulation market?
  • What is the breakup of the market based on the technology?
  • Which is the most attractive technology in the microencapsulation market?
  • What is the breakup of the market based on the application?
  • Which is the most attractive application in the microencapsulation market?
  • What is the competitive structure of the global microencapsulation market?
  • Who are the key players/companies in the global microencapsulation market?
Frequently Asked Questions about the Global Microencapsulation Market

What is the estimated value of the Global Microencapsulation Market?

The Global Microencapsulation Market was estimated to be valued at $9.6 Billion in 2022.

What is the growth rate of the Global Microencapsulation Market?

The growth rate of the Global Microencapsulation Market is 8.9%, with an estimated value of $16 Billion by 2028.

What is the forecasted size of the Global Microencapsulation Market?

The Global Microencapsulation Market is estimated to be worth $16 Billion by 2028.

Who are the key companies in the Global Microencapsulation Market?

Key companies in the Global Microencapsulation Market include AeroVironment Inc., BAE Systems plc, Boston Dynamics (Hyundai Motor Group), Cobham Limited (Meggitt PLC), Elbit Systems Ltd., Knightscope Inc., Kongsberg Gruppen, Leonardo S.p.A., Lockheed Martin Corporation and Northrop Grumman Corporation.

Table of Contents

1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 Introduction
4.1 Overview
4.2 Key Industry Trends
5 Global Microencapsulation Market
5.1 Market Overview
5.2 Market Performance
5.3 Impact of COVID-19
5.4 Market Forecast
6 Market Breakup by Coating Material
6.1 Carbohydrates
6.1.1 Market Trends
6.1.2 Market Forecast
6.2 Gums and Resins
6.2.1 Market Trends
6.2.2 Market Forecast
6.3 Lipids
6.3.1 Market Trends
6.3.2 Market Forecast
6.4 Polymers
6.4.1 Market Trends
6.4.2 Market Forecast
6.5 Proteins
6.5.1 Market Trends
6.5.2 Market Forecast
7 Market Breakup by Core Form
7.1 Solid
7.1.1 Market Trends
7.1.2 Market Forecast
7.2 Liquid
7.2.1 Market Trends
7.2.2 Market Forecast
7.3 Gas
7.3.1 Market Trends
7.3.2 Market Forecast
8 Market Breakup by Technology
8.1 Spray Technology
8.1.1 Market Trends
8.1.2 Market Forecast
8.2 Dripping Technology
8.2.1 Market Trends
8.2.2 Market Forecast
8.3 Emulsion Technology
8.3.1 Market Trends
8.3.2 Market Forecast
8.4 Coating Technology
8.4.1 Market Trends
8.4.2 Market Forecast
8.5 Others
8.5.1 Market Trends
8.5.2 Market Forecast
9 Market Breakup by Application
9.1 Pharmaceutical and Healthcare
9.1.1 Market Trends
9.1.2 Market Forecast
9.2 Household and Personal Care
9.2.1 Market Trends
9.2.2 Market Forecast
9.3 Food and Beverages
9.3.1 Market Trends
9.3.2 Market Forecast
9.4 Agrochemicals
9.4.1 Market Trends
9.4.2 Market Forecast
9.5 Construction
9.5.1 Market Trends
9.5.2 Market Forecast
9.6 Textiles
9.6.1 Market Trends
9.6.2 Market Forecast
9.7 Others
9.7.1 Market Trends
9.7.2 Market Forecast
10 Market Breakup by Region
10.1 North America
10.1.1 United States
10.1.1.1 Market Trends
10.1.1.2 Market Forecast
10.1.2 Canada
10.1.2.1 Market Trends
10.1.2.2 Market Forecast
10.2 Asia-Pacific
10.2.1 China
10.2.1.1 Market Trends
10.2.1.2 Market Forecast
10.2.2 Japan
10.2.2.1 Market Trends
10.2.2.2 Market Forecast
10.2.3 India
10.2.3.1 Market Trends
10.2.3.2 Market Forecast
10.2.4 South Korea
10.2.4.1 Market Trends
10.2.4.2 Market Forecast
10.2.5 Australia
10.2.5.1 Market Trends
10.2.5.2 Market Forecast
10.2.6 Indonesia
10.2.6.1 Market Trends
10.2.6.2 Market Forecast
10.2.7 Others
10.2.7.1 Market Trends
10.2.7.2 Market Forecast
10.3 Europe
10.3.1 Germany
10.3.1.1 Market Trends
10.3.1.2 Market Forecast
10.3.2 France
10.3.2.1 Market Trends
10.3.2.2 Market Forecast
10.3.3 United Kingdom
10.3.3.1 Market Trends
10.3.3.2 Market Forecast
10.3.4 Italy
10.3.4.1 Market Trends
10.3.4.2 Market Forecast
10.3.5 Spain
10.3.5.1 Market Trends
10.3.5.2 Market Forecast
10.3.6 Russia
10.3.6.1 Market Trends
10.3.6.2 Market Forecast
10.3.7 Others
10.3.7.1 Market Trends
10.3.7.2 Market Forecast
10.4 Latin America
10.4.1 Brazil
10.4.1.1 Market Trends
10.4.1.2 Market Forecast
10.4.2 Mexico
10.4.2.1 Market Trends
10.4.2.2 Market Forecast
10.4.3 Others
10.4.3.1 Market Trends
10.4.3.2 Market Forecast
10.5 Middle East and Africa
10.5.1 Market Trends
10.5.2 Market Breakup by Country
10.5.3 Market Forecast
11 SWOT Analysis
11.1 Overview
11.2 Strengths
11.3 Weaknesses
11.4 Opportunities
11.5 Threats
12 Value Chain Analysis
13 Porters Five Forces Analysis
13.1 Overview
13.2 Bargaining Power of Buyers
13.3 Bargaining Power of Suppliers
13.4 Degree of Competition
13.5 Threat of New Entrants
13.6 Threat of Substitutes
14 Price Analysis
15 Competitive Landscape
15.1 Market Structure
15.2 Key Players
15.3 Profiles of Key Players
15.3.1 AVEKA Group
15.3.1.1 Company Overview
15.3.1.2 Product Portfolio
15.3.2 Balchem Inc.
15.3.2.1 Company Overview
15.3.2.2 Product Portfolio
15.3.2.3 Financials
15.3.2.4 SWOT Analysis
15.3.3 BASF SE
15.3.3.1 Company Overview
15.3.3.2 Product Portfolio
15.3.3.3 Financials
15.3.3.4 SWOT Analysis
15.3.4 Bayer AG
15.3.4.1 Company Overview
15.3.4.2 Product Portfolio
15.3.4.3 Financials
15.3.4.4 SWOT Analysis
15.3.5 Capsulae
15.3.5.1 Company Overview
15.3.5.2 Product Portfolio
15.3.6 Cargill Incorporated
15.3.6.1 Company Overview
15.3.6.2 Product Portfolio
15.3.6.3 SWOT Analysis
15.3.7 DuPont de Nemours Inc.
15.3.7.1 Company Overview
15.3.7.2 Product Portfolio
15.3.7.3 Financials
15.3.7.4 SWOT Analysis
15.3.8 Encapsys LLC
15.3.8.1 Company Overview
15.3.8.2 Product Portfolio
15.3.9 Koehler Innovative Solutions
15.3.9.1 Company Overview
15.3.9.2 Product Portfolio
15.3.10 Koninklijke DSM N.V.
15.3.10.1 Company Overview
15.3.10.2 Product Portfolio
15.3.10.3 Financials
15.3.10.4 SWOT Analysis
15.3.11 Lycored
15.3.11.1 Company Overview
15.3.11.2 Product Portfolio
15.3.12 Reed Pacific
15.3.12.1 Company Overview
15.3.12.2 Product Portfolio
15.3.13 Syngenta Group (China National Chemical Corporation)
15.3.13.1 Company Overview
15.3.13.2 Product Portfolio
15.3.13.3 SWOT Analysis
15.3.14 TasteTech
15.3.14.1 Company Overview
15.3.14.2 Product Portfolio

Companies Mentioned

  • AVEKA Group
  • Balchem Inc.
  • BASF SE
  • Bayer AG
  • Capsulae
  • Cargill Incorporated
  • DuPont de Nemours Inc.
  • Encapsys LLC
  • Koehler Innovative Solutions
  • Koninklijke DSM N.V.
  • Lycored
  • Reed Pacific
  • Syngenta Group (China National Chemical Corporation)
  • TasteTech

Methodology

Loading
LOADING...