+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Pinch Analysis and Process Integration. A User Guide on Process Integration for the Efficient Use of Energy. Edition No. 2

  • Book

  • December 2006
  • Elsevier Science and Technology
  • ID: 1769480

Pinch analysis and related techniques are the key to design of inherently energy-efficient plants. This book shows engineers how to understand and optimize energy use in their processes, whether large or small. Energy savings go straight to the bottom line as increased profit, as well as reducing emissions.

This is the key guide to process integration for both experienced and newly qualified engineers, as well as academics and students. It begins with an introduction to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature and the golden rules of pinch-based design to meet energy targets.

The book shows how to extract the stream data necessary for a pinch analysis and describes the targeting process in depth. Other essential details include the design of heat exchanger networks, hot and cold utility systems, CHP (combined heat and power), refrigeration and optimization of system operating conditions. Many tips and techniques for practical application are covered, supported by several detailed case studies and other examples covering a wide range of industries, including buildings and other non-process situations.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Introduction2. Key concepts of pinch analysis3. Data extraction and energy targeting4. Heat exchanger network design5. Utilities, heat and power systems6. Process change and evolution7. Batch and time-dependent processes8. Applying the technology in practice9. Case studies10. Conclusions

Authors

Ian C. Kemp Independent Consultant, UK. Ian Kemp has over 30 years of experience in pinch analysis and process energy reduction, including consultancy, R&D, and technical writing. He was a principal technologist at AEA Technology, Harwell, and a scientific leader at GSK. He received the IChemE Junior Moulton Medal in 1989 for his paper on Batch Process Integration and the IChemE Brennan Medal in 2007 for the second edition of this book. His specialties include solids processing, particularly of pharmaceuticals, and drying processes, including spray drying, fluid bed drying and granulation, and dryer selection and troubleshooting, as well as energy reduction, sustainability, and pinch analysis.