+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Generating Micro- and Nanopatterns on Polymeric Materials. Edition No. 1

  • Book

  • 390 Pages
  • March 2011
  • John Wiley and Sons Ltd
  • ID: 1877947
New micro and nanopatterning technologies have been developed in the last years as less costly and more flexible alternatives to phtolithograpic processing. These technologies have not only impacted on recent developments in microelectronics, but also in emerging fields such as disposable biosensors, scaffolds for tissue engineering, non-biofouling coatings, high adherence devices, or photonic structures for the visible spectrum. This handbook presents the current processing methods suitable for the fabrication of micro- and nanostructured surfaces made out of polymeric materials. It covers the steps and materials involved, the resulting structures, and is rounded off by a part on applications. As a result, chemists, material scientists, and physicists gain a critical understanding of this topic at an early stage of its development.

Table of Contents

Preface

PART I: Molding

MATERIALS AND PROCESSES IN UV-ASSISTED NANOIMPRINT LITHOGRAPHY
Introduction
UV-Assisted Nanoimprint Lithography
Imprinting Materials
Mold Fabrication and Anti-Sticking Strategies
Conclusion
ROLL-TO-ROLL NANOIMPRINT LITHOGRAPHY AND DYNAMIC NANO-INSCRIPTION
Introduction
Roll-to-Roll Nanoimprint Lithography
Dynamic Nano-Inscription
Summary
SOLVENT-ASSISTED MOLDING
The Principle of Solvent-Assisted Molding
Solvent-Assisted Molding with a Good Solvent
Solvent-Assisted Molding with a Poor Solvent
Other Techniques
Applications of Solvent-Assisted Molding
Conclusions
SOFT LITHOGRAPHY AND VARIANTS
Introduction
Key Features of Soft Lithography
Microcontact Printing of Self-Assembled Monolayers
Soft Molding Techniques
Summary

PART II: Writing and Printing

TRANSFER PRINTING PROCESSES
Introduction
Techniques
Key Issues in Transfer Printing Methods
Advantages and Disadvantages
Applications
DIRECT-WRITE ASSEMBLY OF 3D POLYMERIC STRUCTURES
Introduction
Polyelectrolyte Inks
Silk Fibroin Inks
Hydrogel Inks
Opportunities and Challenges

PART III: Laser Scanning

THREE-DIMENSIONAL MICROFABRICATION BY TWO-PHOTON POLYMERIZATION
Introduction
Fundamentals
Materials
Experimental Setup
Resolution
Microstructures: Properties and Characterization
Applications
Limitations and Future Directions
LASER MICROMACHINING OF POLYMERS
Introduction
Principles of Beam-Matter Interaction in Ablation Processes
Laser Ablation of Polymers
Laser-Induced Roughening
Generative Laser Processes
Conclusion

PART IV: Self Organization

COLLODAL POLYMER PATTERNING
Introduction
Emulsion Polymerization
Forces and Mechanisms in Polymer Dispersion
Polymer Patterns from Colloidal Suspensions
Summary and Outlook
DIRECTED SELF-ASSEMBLY OF BLOCK COPOLYMER FILMS
Introduction
Energetics of the Basic Directed Assembly System
Examples of Directed Assembly
Conclusion
SURFACE INSTABILITY AND PATTERN FORMATION IN THIN POLYMER FILMS
Introduction
Origin of Surface Instability
Polymer Thin Film Dewetting
Dewetting on Patterned Substrates
Instability due to Externally Imposed Fields
Conclusion

PART V: Applications

CELLS ON PATTERNS
Introduction
Physicochemical Properties of the Substrate Read by Cells
Conclusions
POLYMER PATTERNS AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS AND TISSUE ENGINEERING
Introduction
Cell Response to 2D Patterns
Cells onto 3D Objects and Scaffolds
Concluding Remarks
NANO- AND MICRO-STRUCTURED POLYMER SURFACES FOR THE CONTROL OF MARINE BIOFOULING
Introduction
Replica Molding in PDMS and Other Polymers
Stretched Topographies in PDMS
Structured Surfaces by Self-Assembly
Nanocomposites
Nanostructured Polymer Surfaces by Vapor Deposition Methods
Conclusions
BIOINSPIRED PATTERNED ADHESIVES
Introduction
Vertical Structures
Tilted Structures
Coated Structures
Hierarchical Structures
3D Structures
Switchable Adhesion
Outlook
PATTERNED MATERIALS AND SURFACES FOR OPTICAL APPLICATIONS
Introduction
Optical Micro- and Nanostructures for Applications
Conclusion

Authors

Eduard Arzt INM - Leibniz Institut for New Materials, Stuttgart, Germany. Aránzazu del Campo INM - Leibniz Institut für Neue Materialien, Stuttgart, Ge.