Principles and Practice of Ground Improvement

  • ID: 2638584
  • Book
  • 432 Pages
  • John Wiley and Sons Ltd
1 of 4

PRACTICAL GROUND IMPROVEMENT WITH THE LATEST TECHNOLOGY

Principles and Practice of Ground Improvement presents the latest, most up–to–date information on industry technologies, with thorough exploration of both the theoretical and practical aspects of ground improvement. Detailed design procedures and examples facilitate easy implementation, and deep discussion of the applicability, advantages, and limitations of each method helps you make decisions from a more informed perspective. You′ll gain insight into the principles behind commonly used ground improvement methods, along with construction details and quality control and assurance techniques that help ensure a successful solution.

Ground improvement enhances public infrastructure safety, and this book provides the understanding that stands between a successful and economical resolution and potential catastrophe.

  • Review the basics of geotechnical engineering as applied to the problems of ground improvement
  • Understand the properties of different geomaterials, and the testing and design approaches that best apply
  • Discover solutions to the challenges posed by compaction and replacement scenarios
  • Learn the important factors to consider when planning a drainage or dewatering project
  • Examine the various applications of in–situ and fill reinforcement, and the problems that can arise
  • Know the process of chemical stabilization by deep mixing or grouting and possible environmental impacts

Principles and Practice of Ground Improvement is a complete, authoritative reference to the latest in the field, with the insight of an internationally recognized expert.

Note: Product cover images may vary from those shown
2 of 4
Preface xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problematic Geomaterials and Conditions 1

1.2.1 Problematic Geomaterials 1

1.2.2 Problematic Conditions 1

1.3 Geotechnical Problems and Failures 2

1.4 Ground Improvement Methods and Classification 2

1.4.1 Historical Developments 2

1.4.2 Classification 3

1.4.3 General Description, Function, and Application 5

1.5 Selection of Ground Improvement Method 5

1.5.1 Necessity of Ground Improvement 5

1.5.2 Factors for Selecting Ground Improvement Method 10

1.5.3 Selection Procedure 12

1.6 Design Considerations 12

1.7 Construction 13

1.8 Quality Control and Assurance 14

1.9 Recent Advances and Trends for Future Developments 14

1.9.1 Recent Advances 14

1.9.2 Trends for Future Developments 14

1.10 Organization of Book 14

Problems 14

References 15

CHAPTER 2 GEOTECHNICAL MATERIALS, TESTING, AND DESIGN 17

2.1 Introduction 17

2.2 Geomaterials and Properties 17

2.2.1 Classifications 17

2.2.2 Physical Properties 18

2.2.3 Mechanical Properties 19

2.2.4 Hydraulic Properties 25

2.2.5 Compaction of Geomaterial 26

2.3 Geosynthetics and Properties 29

2.3.1 Type of Geosynthetic 29

2.3.2 Function 30

2.3.3 Properties and Test Methods 33

2.4 In situ Testing 40

2.4.1 Standard Penetration Test 40

2.4.2 Cone Penetration Test 42

2.4.3 Vane Shear Test 45

2.4.4 Pressuremeter Test 46

2.4.5 Plate Load Test 47

2.5 Shallow Foundation Design 48

2.5.1 Bearing Capacity 48

2.5.2 Settlement 50

2.5.3 Consolidation 54

2.6 Slope Stability Analysis 55

2.6.1 Introduction 55

2.6.2 Methods for Slope Stability Analysis 55

2.7 Earth Retaining Wall Analysis 61

2.7.1 Type of Wall 61

2.7.2 Lateral Earth Pressure Coefficient 61

2.7.3 Rankine s Theory 61

2.7.4 Coulomb s Theory 63

2.8 Liquefaction Analysis 64

2.8.1 Liquefaction Potential 64

2.8.2 Earthquake–Induced Settlement 66

Problems 67

References 70

CHAPTER 3 SHALLOW AND DEEP COMPACTION 73

3.1 Introduction 73

3.2 Densification Principles 73

3.3 Conventional Compaction 73

3.3.1 Introduction 73

3.3.2 Principles 74

3.3.3 Design Considerations 77

3.3.4 Design Parameters and Procedure 80

3.3.5 Design Example 80

3.3.6 Construction 81

3.3.7 Quality Control and Assurance 82

3.4 Intelligent Compaction 82

3.4.1 Introduction 82

3.4.2 Principles 83

3.4.3 Design Considerations 86

3.4.4 Construction 88

3.4.5 Quality Control and Assurance 88

3.5 Deep Dynamic Compaction 89

3.5.1 Introduction 89

3.5.2 Principles 90

3.5.3 Design Considerations 91

3.5.4 Design Parameters and Procedure 97

3.5.5 Design Example 98

3.5.6 Construction 99

3.5.7 Quality Control and Assurance 99

3.6 Rapid Impact Compaction 100

3.6.1 Introduction 100

3.6.2 Principles 101

3.6.3 Design Considerations 101

3.6.4 Design Parameters and Procedure 103

3.6.5 Design Example 103

3.6.6 Construction 104

3.6.7 Quality Control and Assurance 104

3.7 Vibro–compaction 104

3.7.1 Introduction 104

3.7.2 Principles 106

3.7.3 Design Considerations 109

3.7.4 Design Parameters and Procedure 110

3.7.5 Design Example 111

3.7.6 Construction 112

3.7.7 Quality Control and Assurance 113

Problems 113

References 115

CHAPTER 4 OVEREXCAVATION AND REPLACEMENT 117

4.1 Introduction 117

4.1.1 Basic Concept 117

4.1.2 Suitability 117

4.1.3 Applications 117

4.1.4 Advantages and Limitations 117

4.2 Principles 118

4.2.1 Stress Distribution 118

4.2.2 Failure Modes 119

4.3 Design Considerations 119

4.3.1 General Shear Failure within Replaced Zone 120

4.3.2 Punching Failure through the Replaced Zone 120

4.3.3 Failure of Distributed Foundation 121

4.3.4 Punching Failure of Replaced Zone into In Situ Soil 121

4.3.5 Minimum Bearing Capacity and Factor of Safety 122

4.3.6 Settlement of a Footing on Layered Soils of Infinite Width 122

4.3.7 Settlement of a Footing on a Replaced Zone with Limited Area 122

4.4 Design Parameters and Procedure 124

4.4.1 Design Parameters 124

4.4.2 Design Procedure 124

4.5 Design Example 125

4.6 Construction 130

4.6.1 Selection of Fill 130

4.6.2 Excavation 131

4.6.3 Placement and Compaction 131

4.7 Quality Control and Assurance 131

4.7.1 Locations and Dimensions 131

4.7.2 Compacted Fill 131

4.7.3 Performance Evaluation 131

Problems 131

References 132

CHAPTER 5 DEEP REPLACEMENT 133

5.1 Introduction 133

5.1.1 Basic Concepts 133

5.1.2 Suitability 135

5.1.3 Applications 135

5.1.4 Advantages and Limitations 135

5.2 Principles 136

5.2.1 Functions 136

5.2.2 Densification 136

5.2.3 Load Transfer Mechanisms 137

5.2.4 Failure Modes 140

5.3 Design Considerations 141

5.3.1 General Rules 141

5.3.2 Densification Effect 142

5.3.3 Bearing Capacity 143

5.3.4 Settlement 145

5.3.5 Consolidation 148

5.3.6 Stability 151

5.3.7 Liquefaction 152

5.3.8 Design of Geosynthetic–encased Granular Columns 153

5.4 Design Parameters and Procedure 156

5.4.1 Granular Columns 156

5.4.2 Concrete Columns 157

5.4.3 Geosynthetic–encased Granular Column 157

5.5 Design Examples 158

5.6 Construction 163

5.6.1 Sand Compaction Columns 163

5.6.2 Stone Columns 163

5.6.3 Rammed Aggregate Columns 164

5.6.4 Vibro–Concrete Columns 164

5.6.5 Controlled Modulus (Stiffness) Columns 165

5.6.6 Geosynthetic–encased Granular Columns 165

5.7 Quality Control and Assurance 165

5.7.1 Locations and Dimensions 165

5.7.2 Fill Material 165

5.7.3 Installation Parameters 166

5.7.4 Performance Evaluation 167

Problems 168

References 170

CHAPTER 6 DRAINAGE AND DEWATERING 173

6.1 Introduction 173

6.2 Principles of Water Flow in Geomaterial 174

6.2.1 Bernoulli s Equation 174

6.2.2 Flow Net 175

6.2.3 Pore Water Pressure and Uplift Force 176

6.2.4 Stresses Due to Seepage 176

6.3 Filtration 177

6.3.1 Introduction 177

6.3.2 Principles 178

6.3.3 Design Considerations 180

6.3.4 Design Parameters and Procedure 184

6.3.5 Design Example 185

6.3.6 Construction 185

6.3.7 Quality Control and Assurance 185

6.4 Drainage 185

6.4.1 Introduction 185

6.4.2 Principles 187

6.4.3 Design Considerations 188

6.4.4 Design Parameters and Procedure 193

6.4.5 Design Examples 194

6.4.6 Construction 195

6.4.7 Quality Control and Assurance 195

6.5 Dewatering 196

6.5.1 Introduction 196

6.5.2 Principles 199

6.5.3 Design Considerations 200

6.5.4 Design Parameters and Procedure 202

6.5.5 Design Example 205

6.5.6 Construction 206

6.5.7 Quality Control and Assurance 206

Problems 206

References 209

CHAPTER 7 PRELOADING 211

7.1 Introduction 211

7.1.1 Basic Concept 211

7.1.2 Suitability 211

7.1.3 Applications 212

7.1.4 Advantages and Limitations 212

7.2 Principles 212

7.2.1 Precompression 212

7.2.2 Stress and Ground Movement 213

7.2.3 Consolidation Theory 214

7.2.4 Vacuum and Fill Combined Preloading 217

7.2.5 Surcharge Preloading 217

7.3 Design Considerations 218

7.3.1 Vertical Drains 218

7.3.2 Preloading 220

7.3.3 Surcharge Effect 223

7.4 Design Parameters and Procedures 226

7.4.1 Design Parameters 226

7.4.2 Design Procedure 226

7.5 Design Example 227

7.6 Construction 235

7.6.1 Vertical Drains 235

7.6.2 Drainage Layer 235

7.6.3 Fill Preloading 236

7.6.4 Vacuum Preloading 237

7.7 Quality Control and Assurance 237

7.7.1 Materials 238

7.7.2 Construction Details 238

7.7.3 Field Monitoring 238

7.7.4 Performance Evaluation 240

Problems 240

References 242

CHAPTER 8 DEEP MIXING AND GROUTING 245

8.1 Introduction 245

8.2 Deep Mixing 245

8.2.1 Introduction 245

8.2.2 Principles 248

8.2.3 Design Considerations 259

8.2.4 Design Parameters and Procedure 268

8.2.5 Design Example 268

8.2.6 Construction 270

8.2.7 Quality Control and Assurance 272

8.3 Grouting 273

8.3.1 Introduction 273

8.3.2 Principles 275

8.3.3 Design Considerations 283

8.3.4 Design Parameters and Procedure 289

8.3.5 Design Example 289

8.3.6 Construction 290

8.3.7 Quality Control and Assurance 291

Problems 291

References 293

CHAPTER 9 IN SITU GROUND REINFORCEMENT 297

9.1 Introduction 297

9.2 Ground Anchors 297

9.2.1 Introduction 297

9.2.2 Principles 300

9.2.3 Design Considerations 303

9.2.4 Design Parameters and Procedure 311

9.2.5 Design Example 311

9.2.6 Construction 313

9.2.7 Quality Control and Assurance 313

9.3 Soil Nailing 314

9.3.1 Introduction 314

9.3.2 Principle 315

9.3.3 Design Considerations 318

9.3.4 Design Parameters and Procedure 327

9.3.5 Design Example 328

9.3.6 Construction 329

9.3.7 Quality Control and Assurance 329

Problems 330

References 332

CHAPTER 10 FILL REINFORCEMENT 333

10.1 Introduction 333

10.2 Geosynthetic–Reinforced Slopes 333

10.2.1 Introduction 333

10.2.2 Principles 334

10.2.3 Design and Analysis 336

10.2.4 Design Parameters and Procedure 341

10.2.5 Construction 344

10.2.6 Quality Control and Assurance 345

10.3 Geosynthetic–Reinforced Embankments 345

10.3.1 Introduction 345

10.3.2 Principles 345

10.3.3 Design Considerations 346

10.3.4 Design Parameters and Procedure 351

10.3.5 Construction 352

10.3.6 Quality Control and Assurance 353

10.4 Geosynthetic–Reinforced Column–Supported Embankments 353

10.4.1 Introduction 353

10.4.2 Principles 354

10.4.3 Design Considerations 359

10.4.4 Design Parameters and Procedure 362

10.4.5 Construction 363

10.4.6 Quality Control and Assurance 363

10.5 Mechanically Stabilized Earth Walls 364

10.5.1 Introduction 364

10.5.2 Principles 364

10.5.3 Design Considerations 367

10.5.4 Design Parameters and Procedure 370

10.5.5 Construction 374

10.5.6 Quality Control and Assurance 374

10.6 Geosynthetic–Reinforced Foundations 375

10.6.1 Introduction 375

10.6.2 Principles 375

10.6.3 Design Considerations 377

10.6.4 Design Parameters and Procedure 380

10.6.5 Construction 382

10.6.6 Quality Control and Assurance 382

10.7 Geosynthetic–Reinforced Roads 382

10.7.1 Introduction 382

10.7.2 Principles 383

10.7.3 Design Considerations for Unpaved Roads 387

10.7.4 Design Parameters and Procedure for Unpaved Roads 389

10.7.5 Design Considerations for Paved Roads 390

10.7.6 Design Parameters and Procedure for Paved Roads 392

10.7.7 Design Examples 393

10.7.8 Construction 396

10.7.9 Quality Control and Assurance 396

Problems 396

References 399

INDEX 403

Note: Product cover images may vary from those shown
3 of 4

Loading
LOADING...

4 of 4
Jie Han
Note: Product cover images may vary from those shown
5 of 4
Note: Product cover images may vary from those shown
Adroll
adroll