Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

  • ID: 2784440
  • Book
  • 946 Pages
  • Elsevier Science and Technology
1 of 3
This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques.

Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography.
  • Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation
  • Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches
  • Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance
READ MORE
Note: Product cover images may vary from those shown
2 of 3

Loading
LOADING...

3 of 3
Hartnig, ChristophDr Christoph Hartnig works at Chemetall GmbH and formerly headed research departments at both BASF Fuel Cell GmbH and the Center for Solar Energy and Hydrogen Research (ZSW), Germany. Dr Christina Roth is Professor for Renewable Energies at Technische Universität Darmstadt and Head of a Research Group at the Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Germany. The editors are well known for their research and work in the fields of low temperature fuel cell technology and materials characterisation.
Roth, ChristinaDr Christina Roth is Professor for Renewable Energies at Technische Universität Darmstadt and Head of a Research Group at the Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Germany. The editors are well known for their research and work in the fields of low temperature fuel cell technology and materials characterisation.
Note: Product cover images may vary from those shown
4 of 3
Note: Product cover images may vary from those shown
Adroll
adroll